SECOND INTERIM REPORT
on a
CODING SYSTEM DESIGN FOR ADVANCED SOLAR MISSIONS

Contract NAS2-3637

Submitted to:

Ames Research Center
National Aeronautics and Space Administration

May 12, 1967

Submitted by:

Codex Corporation
222 Arsenal Street
Watertown, Massachusetts 02172

Table of Contents

Introduction
Summary

Future Work

Appendix A. Sequential Decoding Program for the SDS 910-920
Conceptual Description of the Program

Flow Charts and Listing

Appendix B. Input-Output, Synchronization, and Error Detection
Timing: Initial Concept
Timing: Overlap Concept
Correlation Synchronization
Implementation of Synch Scheme

An Algorithm for Detecting Errors Made with Sequential
Decoding

Appendix C. Evaluation of Small Computers as Sequential
Decoders

Appendix D. Study of a Special-Purpose Sequential Decoder
Over-all Structure and Characteristics of the Decoder
Design Considerations for a Decoder
The Encoder
Decoding Action
Memory Size Considerations
Tracking
Memory Tail
Node Interrupt
Timing Within Node Circuits
Size of the Metric
Numerical Notation
The Table

The speed of the table

Page

10
10
11
13
15

16

19

24
25
29
29
30
31
32
33
33
34
35
36
37
40

Table of Contents (Continued)

Adding zﬁ;

The Adder

Parity Generation

Speed of the Algorithm
Medium-Speed, Fast-Access System

Estimate of Material for Medium-Speed,
Fast-Access Decoder

Summary--Medium-Speed Sequential Decoder

The Ultimate Speed Machine

48
50
51

Introduction

This Second Interim Report covers work performed since the submission
of the first Interim Report on Contract NAS2-3637. A summary of this work

follows, The detailed studies appear in a series of appendices.

Summary

The first Interim Report summarized the results of simulations of
OED schemes, by Codex, and of sequential decoding, by Ames. Because the
sequential decoding scheme was 2-3 db superior to the best OED and 4-5
db superior to the present system, Ames determined that all further ef-
fort should be concentrated on sequential decoding. For systems reasons,

a convolutional code of rate 1/2 and constraint length 25 was chosen.

lator in more intelligible (macro) form, and in two versions, using the
Gallager and the Fano algorithms. The capability of reverse decoding for
error detection has been added, and a program to implement the error de-
tection scheme proposed in Appendix C has been written. This program

has been and is continuing to be used at Ames to pin down details of the
decoding algorithm.

Ames first used this program to choose the best code of constraint
length 25; the result was the length 24 code of Appendix D of the first
Interim Report, with an additional tap in the 25th position. An encoder
for this code, with the additional timing, modulating, and other func-
tions described in the above-referenced appendix, has been constructed
in breadboard form, checked out against a DTU simulator furnished by Ames,
and delivered to Ames. This breadboard contains 92 integrated circuits
of Texas Instruments' Series 51, and a small power supply. Worst case
power consumption is 206 mw. At Ames' request the breadboard documenta-
tion package has been shipped separately with the breadboard and is
therefore not included in this report.

Decoding may be accomplished by the SDS 910-920 computers presently
at each of the antenna sites, by new small third-generation general-purpose
computers, by special-purpose digital devices, or by a combination of the

above. We have been active in all these approaches.

_2-

The SDS 910-920 program reported previously has been interfaced by
Ames into a complete decoding system, which has been used for real-time
and real-data simulations and demonstrations. We provide in this report
complete documentation on the core sequential decoding program, in Ap-
pendix A. In Appendix B we present possible solutions to the important
peripheral problems of input-output and timing, synchronization, and de-
tection of decoder errors.

Appendix C evaluates some of the small general-purpose computers
which appear to be likely candidates for the sequential decoding appli-
cation. We find that a machine in the l-microsecond, $30,000 class is
capable of performing a single decoder computation in about 30 micro-
seconds, as compared to about 200 us for the SDS 910-920; these figures
ignore all overhead and special features of the Pioneer application.
Finally, in Appendix D, we present the results of a detailed study
on the capabilities and cost of a special-purpose machine for this ap-
plication. We find that one can achieve decoder computation times of

about 1 microsecond with readily available components, principally in-

tegrated circuits and a small core memory, at a total hardware materials

cost under $10,000. Speeds down to 100 nanoseconds appear possible.

Future Work

This completes Codex' work under this contract on the development
of a coding system for Pioneer missions of the near future. It has been
a fascinating, exciting, and satisfying business, and while we are elated
to see it advancing so rapidly toward actual use, we are a bit regretful
that our part of it is over. The remainder of our work under this con-
tract will be devoted to the study of concatenation with sequential de-
coding, in the hope that for the advanced missions of the future we can
approach even more closely the ultimate limits of efficiency on communi-

cation from deep space.

APPENDIX A

SEQUENTIAL DECODING PROGRAM FOR THE SDS 910-920

In the previous Interim Report, Appendix C, we reported the writing
of two sequential decoding programs for the SDS 910 or 920, a '"fast"
program and a "short'" program. The "short" program has now been imple-
mented, with all needed interfacing, by L. Hofman of Ames and is intended
for actual use in the Pioneer program. We therefore provide here a de-
tailed description of this program, including a conceptual description,

flow charts, and a commented listing.

-4-

Conceptual Description of the Program

Sequential decoding is a programmed tree search. In Figure 1 we il-
lustrate a small part of the tree for a rate 1/2 code. Each branch is
characterized by a single information bit, or by two transmitted bits,
the first being the information bit, and the second a parity bit P which
is the mod 2 sum of the information bit with a subset of the previous 24
bits in the tree.

The basic unit of the algorithm is a move, or trial; in one move the
decoder looks at the information pertinent to one information bit, called
the current bit, decides whether to make a tentative decision on the cur-
rent bit and proceed to the next bit or to retreat to the previous bit,
and updates the bookkeeping data which reflect its decision. We see that
in general the decision is trivalued: back, forward on 0, or forward on
1. However, when certain bits are known, or bear a known relationship
to previous bits, as with word parity checks, only one of the two forward
moves may be permissible.

The basis for these decisions is the decoding metric. The metric
for any particular branch is a function of the two transmitted bits des-
cribing that branch and the six bits describing what was received at that
time. We assume that the actual values of the metric for these 256 pos-
sible combinations have been precomputed and stored in four 64-word ta-
bles. We find it convenient to require that all metrics be even integers
(which involves no loss in precision).

As the decoder searches through the tree, it keeps track of a quan-
tity which we call the adjusted metric, which may be thought of as the
sum of all branch metrics up to the current branch, minus some integer
times a constant, the threshold spacing DELTA, which must be an even in-
teger but is otherwise an arbitrary parameter of the algorithm. The de-
cision and adjustment of the metric then follow the following rules,
which are modifications of those due to Gallager. In this table MO is

the metric of the branch with a 0 information bit, M., the one informa-

1’
tion bit, and MET%iC thf acggmulated adﬁu metric at the start of the
cetbent flecatit (fey
move. [X] is the z;st positi@e integer %f the form X-i*DELTA. A previ-

ous move of back (0) indicates that the previous move was back to a branch

specified by an information bit of 0, and so forth.

Previous
Bit

Current
Bit

Figure A-1

L Next

Bit

F028-15.00

Previous
Name Move
PFO forward
SFO forward
PF1 forward
BF1 forward
FB forward
BFO |back (0)
BF1 back (1)
BLPF |back (0)
BLSF |back (0)
BBO |back (0)
BB1 back (1)

The initial value for METRIC is set at 1; with Mo and M

Metric Conditions

METRIC+M > 0,
METRIC+M0> 0,
METRIC+MO< 0,
METRIC+M17 0,
METRIC+M < 0,
METRIC+M, > 0,
METRIC+M < 0,
METRIC+M. < 0
METRIC—MO< 0
METRIC—M1< 0
DELTA >
METRIC-MO>O,

— O = O

METRI C—Mo7 0,

METRI C—M1 70

METRIC—MO ? DELTA, METRIC—MO+M >0

METRIC < DELTA
METRIC > DELTA
METRIC < DELTA

METRIC > DELTA

METRIC-M_+M,> 0

1

METRIC-M +M<K0
o 1

gy

Decision

Metric Adjustment

forward
forward

forward

forward

back

forward

forward

forward
forward
back
back

on

on

on

on

on

on

on

on

1

METRIC=[METRIC+MO]
METRIC= METRIC+Mo
METRIC=[METRIC+M1]

METRIC=

METRIC=

METRIC=
METRIC=

METRIC= [METRIC-M_+M,]

METRIC=
METRIC=
METRIC=

METRIC+M1

METRIC

METRIC+DELTA
METRIC+DELTA

METRIC-MO+M
METRIC—MO
METRIC—M1

1

always even,

METRIC will always be odd, and thus comparisons with 0 and DELTA never

result in equality

also always

heg akioe
ositive.

y examination of the rules we see that METRIC is

If the algorithm ever attempts to move back from

the first bit in the tree, we force a BF move; if it ever moves forward

beyond the last bit in the tree, decoding is complete.

A1l that remains to specify the basic algorithm is to give a method

of telling the algorithm where it is in the tree.

On a forward move, the

decoder must know the parity bit corresponding to a 0 information bit

(that corresponding to 1 will be the complement); on a backward move, it

must know the information and parity bits which describe the previous

branch.

The former problem is handled by storing a word called PARITY,

which tells what the next constraint length of parity bits will be if

all information bits are zeroes.

We find it convenient to let the left-

most (sign) bit of the parity word correspond to the current bit, after

a forward move, and to the next bit, after a backward move; this saves a

-6-

little time. PARITY is initially set to all zeroes. Whenever a 1 is
tentatively decided on, a 24-bit sequence TAP 1, representing the impulse
response of a single 1, is added to PARITY bit-by-bit and mod 2; should
such a decision be revoked, TAP 1 is added again, and thus cancels.

Also, PARITY must be left- and right-shifted as the algorithm moves back-
ward and forward. The result is that we implement what in Massey's terms
would be a Type II encoder.

To tell what the previous branch was, we use a 224-word table called
EST(N). On a forward move from bit N, we store in EST(N) one of four ad-
dresses, corresponding to the four possible combinations of information
and parity. Then if we should ever move back to bit N, we use an indir-
ect address to transfer into the appropriate one of four subprograms,
thus saving all testing. Furthermore, at the end of decoding the frame,
we can read the decoded information from the EST(N) table; this readout
is facilitated if all addresses corresponding to a 0 information bit are
positive, and those to 1, negative.

The algorithm described so far is a complete decoding algorithm for
a rate 1/2 code of constraint length 25 with a resynchronizing frame of
224 bits. However, the rigidities of the Pioneer format give us addi-
tional information which it is to our advantage to use in decoding.

These are the several fixed words which occur in each frame, and the
over-all parity check which is added to most words. We have classified
all bits in the frame into one of the following categories:

1. A fixed bit equal to 1;

2 A fixed bit equal to O;

3. A bit which is a parity check on preceding bits;

4, A bit which enters into a parity check;

5. The first bit in a word, assumed entering into a parity check;

6. All other bits.

Thus a fixed word is described by a mixture of Types 1 and 2; a word with
over-all parity check by 5444443; and a word with 1-3-5-7 parity by
5646463. The description of the entire frame then fills a 224-word table
MOVEF(N), which we again translate into addresses corresponding to six

subprograms; a forward move is then begun by an indirect address transfer

-7-

from this table, just like a backward move. In addition, the backward
move addresses must be increased to describe a greater variety of possi-
ble backward moves.

The only change required by a fixed bit of 0, say, is that, of the
forward moves, PF1 and SF1 are no longer permitted, and the condition for
an FB move becomes simply METRIC + MO<: 0; similarly BLPF and BLSF are
excluded as backward moves, and the condition for BBO is METRIC - Mo>- 0.
For the bits involved in parity checks, we introduce an integer variable
P7; P7 is set to 0 or 1 on the first bit in each word, depending on
whether an even or odd parity check is desired; it is then incremented
by 1 every time a bit is decided to be a 1, or changed from a 1 to 0.
Then, when the parity check bit arrives, P7 is tested for odd or evenness,

and depending on the outcome, the bit is treated as a fixed 1 or 0.

Flow Charts and Listing

- There follow detailed flow charts for the actual program, and a com-
mented listing. The flow charts are preceded by a glossary of the dif-
ferent entries which the program may reach on forward or backward moves.
Then, in order to save needless duplication, we have written out as macro
subprograms the three general types of updating routine needed before a
forward move. The detailed flow charts for each entry then follow, and

finally the listing.

El
EF
EF7
EFXO0
EFX1
EF

our

(AA1)
(AA2)
(AA3)
(AA4)
(AAS)
(AA6)

(AA7)

TABLE 1

FORWARD MOVE ENTRIES

first bit in word

ordinary bit in parity check (third, fifth bits)

last bit in word

fixed bit = 0

fixed bit = 1

ordinary bit not in parity check (second, fourth,
sixth)

bit after last bit in frame

BOO
BO1
B10
B11
BX00
BX01
B700
B701
B710
B711
BINIT

(A1)
(A2)
(A3)
(A4)
(AS)
(A6)
(A7)
(A8)
(A9)
(A10)
(A11)

TABLE TI

BACKWARD MOVE ENTRIES

ordinary bit, 00 chosen
ordinary bit, 01 chosen
ordinary bit, 10 chosen
ordinary bit, 11 chosen
fixed bit, 00 chosen

fixed bit, 01 chosen

seventh bit, 00 chosen
seventh bit, 01 chosen
seventh bit, 10 chosen

seventh bit, 11 chosen

bit before the first bit in the frame

No

Metric
>

Metric =
Metric - AM

Macro Update (0)

Delta
?

Update on Forward Move, Zero Branch Chosen

Variable Parameters:
AM: Metric Increment (Negative)
ADDR: Address Specifying Type of Move
and Choice
U: Entry Address of Macro

Register Assignment on Entry:
A: 0ld Metric
B: 01d Parity

N-»X

'

Yes

ADDR = EST(N)

!

X: Data (N)

Parity (B)-®=A
Right Shift Parity
Zero Enters on Left

!

Metric—»B

Forward
Move
(N=N+1)

i

Metric =
Metric - AM

Y

Mask Metric
with Delta

F028-19.00

F028-20.00
U
Metric
No S Yes 7
Delta l
Metric =
Metric - AM
Metric =
Metric - AM *
Mask Metric
with Delta
Macro Update (1)
Update on Forward Move, One
Branch Chosen N = X
Variable Parameters and Register
Assignment Same as Update (0) i

ADDR —3 EST(N)

Skip this Section
on Fixed Bits

Increment
P7

|

Parity (B)-®»A
Right Shift Parity
Add Impulse Response

U
No Metric Yes
>
I Delta l
?
l etric =
Metric - AM
Metric = 6
Metric - AM
Mask Metric
with Delta

Macro Update (L)

Update on Lateral Move from 0 to 1
Branch

Variable Parameters and Register
Assignment Same as Update (0)

N —& X

!

ADDR—#»EST (N)

Is
this Bit
Checked 1in

Increment
P7

1

Parity (B)—®A
Add Impulse Response

F028-21.00

F028-22.00

Forward Moves: Entries El1 and EF

El
O ¢ Register Assignment on Entry:
A: Parity
Make P7 Bf Metric
Even X: N
e —
X —» N
Data (N)¥X

Metric
>

MOl (DATA)
?

Metric
>

MOO (DATA)
?

No Update (0)

Update (0) 01, A2, UOl

MO0, Al, U0O

Metric
>

M10 (DATA)
?

Metric
>

M1l (DATA)
?

Update (1)
M10, A3, U10

Update (1) No
M11, A4, Ull

Yes

N-1— X N-1—X

Backward Backward
Move Move

[

EFXO [EFX1]

F028-23.00

Ferward Moves: Entries EFXO [EFX1]
Register Assignment Same as EF

7 {
X —» N
DATA (N)#X
Update (0) No Metric Me:rlc No Update (0)
MO0, A5, UXO0O0 > M01, A6, UXO1
’ M01 (DATA s s
MOO (DATA) M10 EDATA%
M11 (DA ?
Update (1)] Update (1)
M11, A4, U1l ["Mi0, A3, ulo !
N-1 - X N-1 —» X
Backward Backward
Move Move

EF7 AV, *

Forward Move: Entry EF7

X —» N
DATA (N)-®»X

Register Assignment Same as EF

F028-24.00

0dd or Even
?

0dd or Even
?

Metric
>

10 (DATA)

Metric
>

M01 (DATA)

Metric
>

M11 (DATA)

Metric
>

MO0 (DATA)
?

Update (1)
M10, A9, U710

Update (0)
MO01, A8, U701

Update (1)
M11, AlQ, U71

Update (0)
MO0, A7, U700

Yes

N-1 — X N-1 —®= X N-1 —=X N-1— X

Backward : Backward Backward
Move Move Move

Backward
Move

BOO [BO1]

© !

X —» N
DATA (N)-X

l

Metric =
Metric +
MOO (DATA)
[MO1 (DATA)]

Metric
> No

F028-25.00

Backward Move: Entry BOO [BO1]

Register Assignment on Entry

A: Metric
B: Parity
X: N

Metric

>

No Update (L)

0?

Metric =
Metric +
Delta -

MO0 (DATA)
[MO1 (DATA)]

l

N —» X

Forward

M11, A4, UBLI1
[M10, A3, UBL10]

N-1 — X
Left Shift Parity
0[1] Enters on Right

Backward
Move

F028-26.00
B710 [B711]
———3p Make P7
0dd Backward Move: Entry B10 [B11], B710 [B711]
B10 [B1l1]
Register Assignment Same as BOO
X —» N
DATA (N)-—»X

l

Metric =
Metric +
M10 (DATA)
[M11 (DATA)]

Metric

> No

0

?

Yes
Metric = N-1 — X
Metric + Add Impulse Response
Delta - to Parity
M10 (DATA) Left Shift Parity
fM11 (DATA)] 1 [0] Enters on Right
this Bit Yes

N —p» X Checked By

ord Parity
?

Increment
P7

Backward
Move

Forward
Move
(N+19=N)

B700 [B701]
—i

Make P7
Odd

BX00 [BX01]

,l

Backward Move:

X —%» N
DATA (N)®X

3

Metric =
Metric +
MO0 (DATA)
[MO1 (DATA)]

F028-27.00

Entry [B701], BX0O [BX01]

Register Assignment Same as BOO

Metric =
Metric +
Delta -

MO0 (DATA)
[MO1 (DATA)]

l

N-1 —» X
Left Shift Parity
0 [1] Enters on Right

N —» X

Forward
Move
N+ 1= N

Backward
Move

ITOP

LDX
LDA
ETR
STA
BRX
LDA
MRG
STA
LDA
MRG
STA
LDA
MRG
STA
LDA
MRG
STA
LDX
LDA
ETR
STA
BRX
LDA
MRG
STA
LDX
LDA
STA
BRX
LDA
STA
BRX
LDA
STA
BRX
LDA
STA
BRX
LDA
STA
BRX
LDA
STA
BRX
LDA
STA
BRX

SDS 910-920 Sequential Decoder Program Listing

=-10
All, 2
SGNMSK
All, 2
$-3

A3
SGNBIT
A3

Ad
SGNBIT
Ad

A9
SGNBIT
A9

Al0
SGNBIT
Al0
=-3
AA3+1,

2
SGNMSK
2

AA3+1,
$-3

AA6
SGNBIT
AA6
=-224
AAl
MOVEF-2,
$+1

AA6
MOVEF-2,
$+1

AA2
MOVEF-2,
$+1

AA6
MOVEF-2,
$+1

AA2
MOVEF-2,
$+1

AA6
MOVEF-2,
$+1

AA3
MOVEF-2,
ITOP

Initialization

A3, A4, A9, A10 SET NEGATIVE
REST OF Al1-Al0 POSITIVE

~

AAl, AAZ, AA3 POSITIVE

AA6 SET NEGATIVE

“ SET UP MOVEF TABLE, PATTERN IS

2 | AAL, AA6, AA2, AAG, AA2, AAG, AA3
{

BEGIN

El

EF1

Listing--page 2

\
|
(

» OVERWRITE FIXED WORDS IN MOVEF
/
{

INSERT OUT INSTRUCTION AT END OF
MOVEF TABLE

INSERT BINIT AT BEGINNING OF EST
TABLE

Core of the Program

BEGIN FRAME DECODING--PARITY=0 TO STA
N=-226, COUNTS UP TO -1
METRIC=-1, METRIC ALWAYS - AND ODD

FIRST BIT ENTRY, FORWARD MOVE
P7 SET EVEN. FOR EVEN PARITY NOP INS
ORDINARY BIT ENTRY, FORWARD MOVE

DETERMINE CURRENT PARITY BIT

IS METRIC-MOO(DATA).LT.O...
YES, DECIDE TO MOVE FORWARD, UPDATE
NO, TRY OTHER BRANCH

BOTH BRANCHES BAD
DECREMENT N
GO TO THE APPROPRIATE BACKWARD MOVE

LDA AA4
LDX =-7

STA MOVEF-121, 2
BRX $-1

LDX =-11

STA MOVEF-2, 2
BRX $-1

LDA AAS

STA MOVEF-125
STA MOVEF-124
STA MOVEF-122
STA MOVEF-16
STA MOVEF-15
STA MOVEF-14
STA MOVEF-11
LDA AA7

STA MOVEEF-2
LDA All

STA EST-226
CLR

LDX =-226

SUB LOBIT

XAB

BRX *MOVEF, 2
STB P7

MIN P7

STX N

PARITY IN A, METRIC IN B, N IN X.
LDX DATA, 2
SKA LOBIT

BRU EF1

XAB

SKG MO0, 2
BRU uoo

SKG M11, 2
BRU U1l

LDX N

EAX -1, 2

BRU *EST, 2
XAB

SKG MO1, 2
BRU uo1

SKG M10, 2
BRU ul10

EFX0

EFX01

EFX1

EFX10

EF7

EF700

LDX
EAX
BRU
STX
LDX
SKA
BRU
XAB
SKG
BRU
LDX
EAX
BRU
XAB
SKG
BRU
LDX
EAX
BRU
STX

ny

T
LA

SKA
BRU
XAB
SKG
BRU
LDX
EAX
BRU
XAB
SKG
BRU
LDX
EAX
BRU
STX
LDX
STB
SKA
BRU
XAB
LDA
SKA
BRU
LDA
SKG
BRU
LDX
EAX
BRU
LDA

N
-1, 2

*EST, 2

N

DATA, 2

LOBIT
EFX01

M0O, 2
UX00

N

-1, 2
*EST, 2

MO1, 2
Uxol

N

-1, 2
*EST, 2
N
DATA,
LOBIT
EFX10

o

Ml1, 2
ull

N

-1, 2
*EST, 2

M10, 2
ulo

N

-1, 2
*EST, 2
N

DATA, 2
METRIC
LOBIT
EF71

P7
LOBIT
EF700
METRIC
M11, 2
U711

N

-1, 2
*EST, 2
METRIC

Listing--page 3

FIXED O BIT ENTRY, SAME AS EF EXCEPT
INHIBITS SECOND BRANCH

FIXED 1 BIT ENTRY

SEVENTH BIT ENTRY

TEST CURRENT PARITY BIT

TEST WHETHER P7 ODD OR EVEN
P7 ODD, FIX SEVENTH BIT O
P7 EVEN, FIX SEVENTH BIT 1

EF71

EF701

uoo

ROO

FO

SF00

uol

RO1

SF01

ul1o0

R10

F1

SKG
BRU
LDX
EAX
BRU
XAB
LDA
SKA
BRU
LDA
SKG
BRU
LDX
EAX
BRU
LDA
SKG
BRU
LDX
EAX
BRU
SKG
BRU
SUB
MRG
STA
LDA
LDX
STA
BAC
RCY
LDB
BRX
SUB
BRU
SKG
BRU
SuB
MRG
STA
LDA
BRU
SUB
BRU
SKG
BRU
SUB
MRG
STA
LDA
LDX

Listing--page 4

M0O, 2
U700

N

-1, 2
*EST, 2

P7
LOBIT
EF701
METRIC
M10, 2
u710

N

-1, 2
*EST, 2
METRIC
MO1, 2
u701

N

-1, 2
*EST, 2
DELTA
SF00
MO0, 2
MASK
METRIC
Al

N

EST, 2

1
METRIC
*MOVEF, 2
MOO, 2
ROO
DELTA
SFO1
MO1, 2
MASK
METRIC
A2

FO
MO1, 2
RO1
DELTA
SF10
M10, 2
MASK
METRIC
A3

N

UPDATE PARAM, 00 CHOSEN, NORMAL BIT
IF METRIC.LT.DELTA INHIBIT TH RAISE
COMPUTE NEW METRIC

RAISE TH, AS A RESULT DELTA.LT.M.LT.O

LOAD ADDRESS WITH y00, STORE IN EST
RIGHT SHIFT PARITY 1 INSERT O IN LEFT
GO TO FORWARD ENTRY

BYPASSES MRG MASK

UPDATE, 01 CHOICE, ORDINARY BIT

UPDATE, 10 CHOICE, ORDINARY BIT

F1A

SF10

Ull

R11

SF11

UXxoo0

RX00

SFX00

UX01

RX01

SFX01

u700

R700

SF700

U701

R701

STA
SKN
MIN
BAC
RCY
EOR
LDB
BRX

SUB.

BRU
SKG
BRU
SUB
MRG
STA
LDA
BRU
SUB
BRU
SKG
BRU
SUB
MRG
STA
LDA
BRU
SUB
BRU
SKG
BRU
SUB
MRG
STA
LDA
BRU
SUB
BRU
SKG
BRU
SUB
MRG
STA
LDA
BRU
SUB
BRU
SKG
BRU
SUB
MRG
STA

Listing--page 5

EST, 2
MOVEF-1, 2
pP7

1
TAP3
METRIC
*MOVEF, 2
M10, 2
R10
DELTA
SF11
M11, 2
MASK
METRIC
A4

F1
M11, 2
R11
DELTA
SFX00
MO0, 2
MASK
METRIC
A5

FO
MO0, 2
RX00
DELTA
SFX01
MO1, 2
MASK
METRIC
A6

FO
MO1, 2
RX01
DELTA
SE700
MO0, 2
MASK
METRIC
A7

FO
MO0, 2
R700
DELTA
SF701
MO1, 2
MASK
METRIC

CHANGE PARITY OF P7 IF CURRENT BIT

IN PARITY CHECK

ADD IMPULSE RESPONSE TO PARITY

UPDATE, 11 CHOICE,

UPDATE, 00 CHOICE,

UPDATE, 01 CHOICE,

UPDATE, 00 CHOICE,

UPDATE, 01 CHOICE,

ORDINARY LIST

FIXED BIT

FIXED BIT

SEVENTH BIT

SEVENTH BIT

SF701

u710

R710

SF710

U711

R711

SF711

BOO

FBOO
FBA
BINIT

LOO

UBXO00

BO1

LO1

LDA
BRU
SuUB
BRU
SKG
BRU
SUB
MRG
STA
LDA
LDX
STA
BRU
SUB
BRU
SKG
BRU
SUB
MRG
STA
LD

LDX
STA
BRU
SUB
BRU
STX
LDX
ADD
SKA
BRU
SUB
LDX
ADD
XAB
BRX
SKG
BRU
STA
LDX
NOD
LDA
BRU
STX
LDX
ADD
SKA
BRU
SUB
BRU
SKG

Listing--page 6

A8

FO

MO1, 2

R701

DELTA UPDATE, 10 CHOICE, SEVENTH BIT
SF710

M10, 2

MASK

METRIC

A9

N

EST, 2

F1A

M10, 2

R710

DELTA UPDATE, 11 CHOICE, SEVENTH BIT
SF711

MI11, 2

MASK

METRIC

AlQ

N

EST, 2

F1A

MI11, 2

R711

N BACK ENTRY, 00 BRANCH, NORMAL BIT
DATA, 2 METRIC IN A, PARITY IN B, N IN X
MO0, 2 RESTORE EARLIER METRIC

SGNBIT IS EARLIER METRIC .GT.O

LOO NO, TRY A LATERAL MOVE

M0O, 2 YES, TURN AROUND, RESTORE LATER METRIC
N AND LOWER THRESHOLD BY DELTA
DELTA

*MOVEF, 2

M11, 2 LATERAL TRY, 00 BRANCH, IS M-MI1.LT.O
UBL11 YES, GO TO UPDATE

METRIC NO, GO BACK AGAIN

N

1 LEFT SHIFT PARITY, DECREMENT N,
METRIC 0 ENTERS ON RIGHT

*EST, 2

N BACK ENTRY, 01 BRANCH, NORMAL BIT
DATA, 2

MO1, 2

SGNBIT

L01

MO1, 2

FBA

M10, 2

UBX01

UBL11

RBL11

Ell

SFBL11

UBL10

RBL10

SFBL10

B710
B10

B711
Bll

UB10

BRU
STA
LDX
LCY
LDA
EAX
BRU
SKG
BRU
SUB
MRG
STA
LDA
LDX
STA
SKN
MIN
XAB
EOR
LDB

RX
SUB
BRU
SKG
BRU
SUB
MRG
STA
LDA
BRU
SUB
BRU
STA
STX
LDX
ADD
SKA
BRU
SUB
BRU
STA
STX
LDX
ADD
SKA
BRU
SUB
BRU
STA
XAB
EOR

Listing--page 7

UBL10

METRIC

N

1 LEFT SHIFT PARITY, 1 ENTERS ON RIGHT
METRIC

-1, 2 DECREMENT N

*EST, 2

DELTA UPDATE, LATERAL MOVE TO 11 BRANCH
SFBL11

M11, 2

MASK

METRIC

A4

N

EST, 2

MOVEE-1, 2

P7

TAP3 SAME AS Ull BUT DOES NOT SHIFT PARITY
METRIC

*MNAVULE T 2
MIUVLD , &

M11, 2

RBL11

DELTA UPDATE, LATERAL MOVE TO 10 BRANCH
SFBL10O

M10, 2

MASK

METRIC

A3

Ell

M10, 2

RBL10O

p7 BACK ENTRY, 10 BR, 7TH BIT, SET P7 ODD
N BACK ENTRY, 10 BRANCH, NORMAL BIT
DATA, 2

M10, 2

SGNBIT EARLIER METRIC .GT.O

UB10O YES, GO BACK

M10, 2 NO, GO FORWARD AND LOWER THRESHOLD
FBA

P7 BACK ENTRY, 11 BR, 7TH BIT, SET P7 ODD
N BACK ENTRY, NORMAL BR, NORMAL BIT
DATA, 2

M11, 2

SGNBIT

UB11

M11, 2

FBA

METRIC GO BACK, UPDATE PARAMETERS

TAP3

UB11

B700
BX00

B701
BX01

ouT

INFO
BO
DATA
Bl
MOVEF
B2
EST
TAP3
DELTA
MASK

LSH
XAB
LDX
SKN
MIN
LDA
EAX
BRU
STA
BAC
EOR
XAB
LDX
SKN
MIN
NOD
LDA
BRU
STA
STX
LDX
ADD
SKA
BRU
BRU
STA
STX
LDX
ADD
SKA
BRU
SUB
BRU
NOP

RES
RES
EQU
RES
EQU
RES
EQU
OCT
oCcT
EQU

Listing--page 8

1

N
MOVEF-1, 2
P7

METRIC

-1, 2
*EST, 2
METRIC

TAP3

N
MOVEF-1, 2
P7

1
METRIC
*EST, 2
P7

N

DATA, 2
MO0, 2
SGNBIT
UBX00
FBOO

P7

N

DATA, 2
MO1, 2
SGNBIT
UBX01
MO1, 2
FBA

224

226
B0+225
225
B1+226
225
B2+4226
27072325
77776000
DELTA

LEFT SHIFT PARITY, 1 ENTERS ON RIGHT

GO BACK, UPDATE PARAMETERS

LEFT SHIFT PARITY, DECR N, 0 ON RIGHT
0 IN A PERMITS NORMALIZE TO BE COMP.

BACK ENTRY, 00 BR, 7TH BIT, SET P7 ODD
BACK ENTRY, OOBR, FIXED BIT

BACK ENTRY, 01 BR, 7TH BIT, SET P7 ODD
BACK ENTRY, 01 BR, FIXED BIT

DECODING COMPLETED

Constants

TAPS, R TO L, OMIT FIRST BIT
MUST BE A POWER OF 2

SGNBIT
LOBIT
SGNMSK
Al

A2

A3

Ad

A5

A6

A7

A8

A9

Al0
All

P7

N
METRIC
MO0
MO1
M10
M1l
AAl
AA2
AA3
AA4
AAS
AA6
AA7

OCT
OCT
OCT
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
BRU
RES
RES
RES
RES
RES
RES
RES
BRU
BRU
BRU
BRU
BRU
BRU
BRU

40000000
1
37777777
BOO

BO1

B10

Bll

BX00
BX01
B700
B701
B710
B711
BINIT

1

1

1

64

64

64
66

v

El
EF
EF7
EFX0
EFX1
EF
ouT

Listing--page 9

APPENDIX B

INPUT-OUTPUT, SYNCHRONIZATION, AND ERROR DETECTION

In addition to the sequential decoding itself, the program for which
is described in Appendix A, the on-site computer must have provision for
initially determining the beginning of the data frame, including the cor-
rect phasing of information and parity bits and resolution of sign am-
biguity; it must then be able to input data from the six-bit data buffer
and output decoded data to the station tape, with a fixed two-frame de-
lay, and with the proper relation to the decoding program. Finally, al-
though a decoding failure due to excessive decoding computations is a
fairly good indicator of which frames have errors, it is useful to have
a still more sensitive error-detection criterion. The reverse decoding
scheme proposed by Ames has proved to be remarkably sensitive; for the

record, however, we present here another possible approach.

Timing: Initial Concept

We assume that every time the input buffer fills with six bits, an
interrupt is generated. These interrupts will serve as an external clock
to control the over-all timing of the program.

In the initial concept, while the decoder is decoding Frame I, the
input/output interrupt program will be loading the data corresponding to
Frame I+1 [DATA (I+1)] and outputting the decoded estimates for Frame I-1
[EST (I-1)]. To minimize storage and to simplify the interrupt routine,
we use the same table for input and output; whenever an interrupt occurs,
we first write EST (N,I-1), then read DATA (N,I+1) into the same place in
the table. Thus we can get away with three 224-word tables; DATA (I+1)/
EST (I-1), DATA (I) and EST(I). Finally, to avoid moving the decoded EST

table to the I/0 table at the beginning of each new frame, it is convenient

to redefine the three tables for each new frame as follows:

-11-
Frame: 1 I +1 I +2

TABLE 1 DATA (I+1)/EST(I-1) DATA (I+1) EST(I+2)

TABLE 2 EST (1) DATA (I+2)/EST (I) DATA (I+2)

TABLE 3 DATA (1) EST (I+1) DATA (I+3)/EST (I+1)

This simply involves rewriting a few dozen addresses in the decoding
and interrupt programs at the beginning of each new frame.

Over-all control of the decoding program is governed by the I/0 in-
terrupt index, NI/0. After the end of a frame (NI/O = 223), the interrupt
program returns to a program BEGINF, which does the following:

1) Resets NI/0 to O.

2) Redefines TABLE 1 - TABLE 3 as above.

3) Sets a decoding flag DFLAG to 0.

4) Initializes and starts the decoding program.

Decoding then proceeds independently of the periodically occurring
interrupts. Whenever decoding is complete, DFLAG is set to 1 and the de-
coding program idles. When NI/O reaches a certain number NBREAK, the in-
terrupt program returns not to the body of the decoding program but to a
program ENDF, which does the following:

1) If DFLAG=0, sets the last 14 bits of EST (I-1) to zero and the

last 14 of EST(I) to the Barker sequence and mode ID. The 14
zeroes will indicate a decoding failure to the TPL.

2) Performs all the data reduction and housekeeping functions now

performed by the on-site computer.

It is clear that NBREAK must be chosen small enough to allow all
these functions to be completed and in any case not larger than 209.
Segregating the housekeeping functions in this way maximizes the time
available for decoding, and probably enables these functions to be per-

formed most efficiently.

Timing: Overlap Concept

As we are pressed for time, it would be useful to avoid wasting the

idle time when the decoder finishes a frame early. It appears that

-12-

without much difficulty we can start the decoder on the next frame as
soon as it finishes the current frame, if we only guard against the de-
coder running ahead of the input data.

In the overlap concept it is assumed that when the I/0 program be-
gins a new frame, the decoding program is already decoding the previous
frame. Thus BEGINF must be revised to do only the following:

1) Reset NI/O0 to O.

2) Redefine the I/0 table only.

3) Set DFLAG to O.

Whenever the decoding program finishes decoding a frame, it trans-
fers immediately to ENDFA, which

1) Sets DFLAG to 1.

2) Redefines the DATA and EST tables.

3) Performs all housekeeping functions.

4) Initializes and restarts the decoding program.

- Finally, whenever NI/O reaches NBREAK, the interrupt program checks
DFLAG. If it is still 0, it then returns to ENDFB, which

1) Sets the last 14 bits of EST(I-1) and EST(I) to 0 and FS, MID.

2) Transfers to ENDFA.

It will be seen that under these rules, DFLAG will be 0 whenever the
decoding program is in the frame previous to that of the I/0 program, and
will be 1 whenever both are in the same frame. 1In the latter case, the
decoding program must be inhibited from advancing beyond the input data.
We recall that in our decoding program all forward moves are initiated
by the instruction BRX *MOVEF, 2, which transfers to the indirect ad-
dress specified by the indexed position in the MOVEF table, and then in-
crements the index. Suppose we then write a little subprogram:

LOOPA EAX -1,2
BRX *MOVEF, 2
which decrements the index and then branches; suppose further that we re-
place the normal address in the MOVEF table by LOOPA; then until the nor-
mal address is restored, the decoding program will simply keep looping

through LOOPA. Thus we insert in the interrupt program

if DFLAG = 1,
TEMP —= MOVEF (NI/0) if TEMP = 0 (restoring the previous address)
MOVEF (NI/O0 + 1) — TEMP (saving the next address)
LOOPA — MOVEF (NI/0+1) (Blocking the decoder)
and set TEMP = 0 in BEGINF.
Since the average number of computations per frame in decoded frames
will normally be much smaller than the number allowed, using the excess

in the next frame ought to decrease the frame deletion rate somewhat.

Correlation Synchronization

The idea of this synchronization scheme is to look for the fixed
frame synch (FS) and frame synch complement (FS) words by simple corre-
lation, using the 3-bit-quantized outputs for each bit, and accumulating
over several frames. The sequential decoder is not used.

All that we know about the frame structure is that it has a period
of 448 and the following form:

1X1X1XOXOX1X0X2110X0X0X1X1X0X1X?%%
Initially we do not know the proper phase, and it is clear from the sym-
metric form of this periodic sequence that we cannot determine phase from
FS and FS alone. Thus our synchronization technique will leave us with
a 180° phase ambiguity and a corresponding 224-bit framing ambiguity
whose resolution we shall discuss at the end of this note.

We begin by focussing our attention on one half-frame of 224 received

bits. Either FS or FS must begin within this half-frame. We define for

each received bit the log likelihood ratio:
X = M - oA

where y is the quantization level received for that bit; there are thus
8 possible values of the log likelihood ratio, or 4 magnitudes and a sign,
where a plus sign indicates a probable zero and a minus sign a probable
one. The correlation weight of the hypothesis that the frame synch se-

quence begins at bit X is then

(lf\:dﬂx\-uufl)-d(x+4\+ulx+u)+dli%5\mx(x\iu)+w(xn‘)

~14-

A large magnitude of C(X), either positive or negative, indicates
that it is likely that either FS or FS begins at bit X. We can now com-
pute C(X) for all the 224 bits in a half-frame, and look for a large mag-
nitude of C(X).

In general, however, the information in one half-frame will not be
sufficient to distinguish between the real starting bit and some false
ones. Therefore, we repeat the process for another 224 received bits,
obtaining another set of correlation weights C'(X), which by themselves
will also not be sufficient for a choice. We can combine these observa-
tions, if we add to C(X) the negative of C'(X + 224); when X is the cor-
rect beginning bit, C(X) will tend to be large and positive, say, and
C'(X + 224) large and negative, or vice versa, so that, continuing this
process for a number of half-frames and reversing the polarity of the
correlation weight every 224 bits, a large positive or negative correlation
peak will tend to build up at the correct starting bit, while the other
correlation weights will tend to average to zero.

There are several distinct types of criteria we could use. First,
we could look at a fixed number of half-frames, accumulating the corre-
lation weights C{X), and at the end pick the bit with the largest abso-
lute magnitude of C(X). Second, we could look until for some bit \C(X){
passed a certain threshold T, and then choose that bit. Finally, we could
keep track both of the largest IC(X)| and the second largest, and choose
the bit corresponding to the former only when the former exceeded the lat-
ter by some fixed amount T. The simulations we have done so far indicate
that any of these schemes will work well for our parameters, but that the
last has the shortest average time to synch for a fixed probability of
false synch. For the latter two schemes we have two complete runs of a
hundred trials, one at E/N0=T=.8, and the other at E/N0=T=.7 where E/N0
is the signal-to-noise ratio per transmitted bit. The former is at and
the latter below any signal-to-noise ratio we are likely to go to.

A fixed choice after 5 half-frames would have resulted in no errors at
.8; at .7, after 6 half-frames. Using the more flexible differential
strategy, stopping whenever the greatest correlation magnitude exceeds

the second greatest by more than T, where T is chosen after the fact as

-15-

the minimum value that would have resulted in no false synchs, we obtain
the results of Table I, which indicate an average time to synch of less

than 4.47 half-frames at E/N =.7, and less than 3.37 at .8.

TABLE I
Number of trials out of 100 in which after N half-frames synchronization

was obtained, with no false synchronization.

N /E/N, = 7 -8
1 0 0
2 17
3 22 59
4 56 88
5 77 99
6 94 100
7 100 100

Implementation of Synch Scheme

We imagine that data will be entered into the decoding computer from
a six-bit buffer, or two received bits at a time. We suppose that this
buffer will contain a flip-flop which will indicate the correct phase and
adjust incoming data accordingly, and that this flip-flop may be changed
on command from the computer. Finally, we shall suppose that on computer
command three bits can be inhibited from entering the buffer, so as to
subsequently switch information-parity bit positions.

Then initial synch would proceed as follows: With each six-bit input
the computer would update the correlation weights of two possible start-
ing bits, storing them in one of the 224-word decoding tables. It would
also keep track of the position and magnitude of the greatest and second
greatest peaks to date. Whenever the former was sufficiently larger than
the latter, it would command the buffer to assume the correct bit phase
and i-p phase, wait for the presumed beginning of the next block, and
start decoding immediately (as in the overlap timing concept). If, 224

received bits later, decoding were not sufficiently far advanced, it

-16-

would then flip the buffer flip-flop and begin decoding with the alter-
nate half-frame and reversed polarity. It ought to be given a few cycles
of this procedure, in case of bad noise; if the decoder is not getting
anywhere under either possibility, however, the initial synch program
should be resumed.

Once synch is established, one can detect loss of synch whenever a
sufficient number of consecutive frames fail to be decoded. In that
case the initial synch program can be used for resynch. It is probably
worth while to first try flipping the buffer flip-flop, in case the loss

of synch was caused by a 180° phase change in the demodulator.

An Algorithm for Detecting Errors Made with Sequential Decoding

Normally one does not worry about undetected errors with sequential
decoding, because they simply do not occur if the constraint length of
the code is long enough and a tail of sufficient length is provided for
resynchronization. For systems reasons, however, one or both of these
conditions may not be achievable, and then the undetected error proba-
bility becomes non-negligible. This is the case in the Pioneer applica-
tion, where the constraint length is limited to 25 by the word length of
the decoding computer, and the tail to 14 or, at the most, 21 bits.

Under these conditions there are several methods of detecting er-
rors. First, a cutoff may be imposed on the total number of decoding
computations, either for a whole frame or for any part of a frame. This
excludes data which are obviously noisy. Second, the likelihood of a
decoded frame may be computed (as by recomputing the metric) and the frame
or a part thereof discarded if it is too unlikely. Both these methods
have been tried; they seem about equivalent, and neither is very sensi-
tive. Their essential defect is that they try to estimate the reliability
of the decoded frame by looking only at the decoded sequence itself,
whereas it has been repeatedly demonstrated that the most sensitive era-
sure criteria are those which compare the most likely transmitted sequence
with the sequences that are nearly as likely. Therefore, one desires a
method of generating a number of the most likely transmitted sequences.

One clever and effective method consists of using a sequential decoder

-17-

to decode a frame both forward and backward, using in the latter case
the last constraint length of decoded bits, including the tail, to ini-
tially fill the shift register. 1In this note we describe another al-
gorithm related to the sequential decoding algorithm itself.

Assume that the sequential decoder has already decoded a frame. In
retrospect we can recompute the metric along the path corresponding to
the metric sequence already decided upon, as illustrated in Figure 1.
The pronounced dip in the metric suggests that there may be errors in
the middle of the sequence, but it has been established that the dip
alone is not very sensitive as a deletion criterion. Much more sensi-
tive would be a criterion which looks to see whether there is another
path nearly as good as the decoded path, as illustrated by the dotted
line in Figure 1.

How are we to find such an alternate path? We know from the struc-
ture of the sequential decoding algorithm that the decoded path was the
first one found that stayed above all the thresholds indicated by the
threshold path of Figure 2, and that no path stays more than the thresh-
old separation A above the threshold path. It is reasonable to as-
sume, however, that any likely alternate path will nowhere fall very far
below the threshold path. Therefore, let us simply drop the threshold
path by some fixed amount MSPACE, and search for any path which stays
everywhere above the dropped threshold path. If we find any such path not
the decoded path, then we can delete wherever there are discrepancies.
More than one such path may be found.

We thus need an algorithm which will search for some path, not the
decoded path, whose metric stays above a fixed threshold path. We can
use something very similar to the sequential decoding algorithm itself,
with the following variations:

1) The thresholds are not set up within the program itself, but are

fixed from the beginning.

2) The ordering of the branches is such that the bit opposite to

the one decoded originally is always the first to be examined;

thus the decoded path will not be examined until all other paths

Beginning

N
Alternate

Path

Figure B-1. Decoded and Alternate Paths

Original Decoded Path

F028-16.00

End

F028-17.

Decoded

———
‘\’_
g Threshold Path

e

Figure B-2. Metric and Threshold Paths

00

-18-

have been discarded, so that we are sure to find a second path
if it exists.

In Figure 3 we have drawn a word flow chart of an algorithm which
resembles the Fano algorithm with the above modifications. Here, the
""top branch'" is the branch with information digit opposite to that on
the decoded branch, and the '"fixed threshold'" is the value at that branch
of the dropped threshold path. We recognize that certain bits may be
fixed; in this case the "top branch'" is the only possible branch.

This algorithm has been programmed but not yet run, so we can only
estimate the probable performance. Performance is measured by effective-
ness in detecting errors as against total computational time required.

In the secondary search every path examined during the original sequen-
tial decoding must be examined again, though only for one threshold, not
for several; this implies that with MSPACE very small the distribution

of computations for the secondary search will have the same Pareto be-
havior as the sequential decoding itself, although with a somewhat smaller
mean. For increasing MSPACE, the number of computations will probably in-
crease exponentially as exp (K*MSPACE), where K is some unknown constant.

The effectiveness of this scheme in detecting errors is unknown.

START
Beginning
of Tree

Step Forward

__.’ on
Top Branch
Compare
Higher Metric Drop to
to Fixed H Bottom
Threshold Branch
Lower A
Yes
On Top Yes Is there a
’ Branch? H Bottom Branch?
No No
Go Back a
Branch
-t
Figure B-3.

Word Flow Chart for Secondary Search Algorithm

F028-18.00

|
Gl Bl = N =N N A O D G D B B B Ee B BN B e

APPENDIX C

EVALUATION OF SMALL COMPUTERS AS SEQUENTIAL DECODERS

Sequential decoding may be performed either by a special-purpose
digital device, such as in Appendix D, or by a general-purpose computer
programmed with a sequential decoding algorithm. 1In general the special-
purpose device will be much faster and perhaps somewhat less expensive
than a small general-purpose computer. However, the flexibility of the
computer allows it to be easily reprogrammed for different missions, or
for different tasks altogether; it can also be easily modified during a
mission to make use of measured noise statistics, experiment reprogram-
ming or shutdown, or any other information which can assist it in decod-
ing. Finally, the general-purpose computer can be used for quick-1look
processing, formatting and tagging, and other real-time functions involv-
ing the actual received data. It is therefore of interest to examine
the performance obtainable with any of a number of small scientific com-
puters in the $30,000-cost, l-microsecond-speed range.

The ground rules of the comparison are as follows. Ample storage is
assumed available, so that wherever time can be saved at the expense of
additional storage, as by writing similar parts of the program many times
or using tables rather than computing, the choice is always made to save
time. Furthermore, it is assumed that the number of decoder computa-
tions per decoded bit is high enough (15 or more, say) that time devoted
to input/output and any small amount of associated computation is essen-
tially negligible. Thus the only significant quantity is the average
time required for a decoder computation.

The structure of all programs was assumed to be the same as the
structure of the SDS 910:920 programs described in Appendix A. That is,
each decoder computation consists of an examination of the metric associ-
ated with the current branch, a decision whether to go forward or back in

the tree, according to the Gallager algorithm, and an updating of the

-20-

various program variables based on this decision. The transfer from the
end of one move to the beginning of the next is accomplished by an indir-
ectly addressed branch instruction, where the address comes from one of
two tables (for forward and backward moves) which catalog the appropri-
ate move for each bit in a frame; thus, although no special bits (fixed,
parity, etc.) were assumed in this comparison, the framework of the pro-
gram is such as to easily accommodate them. The four possible metric
increments for each branch (for the information-parity hypotheses of 00,
01, 10, and 11) are assumed stored for each bit in the frame in four
frame-length tables. Finally, as is implied above, the rate of the code
is assumed to be one half, and the constraint length is assumed to be
two computer word lengths plus one or less, or 33 bits for most of these
machines. |

Flow charts for the three typical moves--forward, backward on 0,
and backward on l--are given in Figures 1 - 3. 1In these charts, M is the
accumulated metric, P the parity word, N the index of the current bit in
frame, A the metric spacing, MO0 the metric increment of the current
branch given a 00 hypothesis, AO0 the backward entry address for a choice
of 00, and so forth. The instruction M = [M] means to reduce M by A if
it exceeds A , and thus repeatedly until it is less than A ; apD
TAP 1 to P means to add the impulse response of the encoder to the parity
word, mod 2 (exclusive or). The total number of paths from top to bottom
is eleven, of which ten are distinct, and these have been labeled at the
exit point by PFO, PFl, etc. From simulation results, we know the ap-
proximate frequency of each of these moves; Table 1 reports the distribu-
tions obfained during a very long search, which is typical of times when
the computational load is high, and during 3000 frames in which the aver-
age number of decoder computations per decoded bit was 4.

The machines compared were the SDS Sigma 2, the DEC PDP-9, the
Honeywell 3C DDP-516, and the Data Machines DATA/620. Requests to the
manufacturers of the EMR Advance 6130, the Interstate IEC-1010, the
Scientific Control SCC-655, and the Systems Engineering Labs SEL-810A,
which appear to be competitive machines, failed to elicit enough infor-

mation to allow comparison. All are 16-bit machines, except for the

M+M00>0? Yes

a8ew] JOIXTR

M+M11>07? Yes

No

F028-28.00

Yes

No

M=M+M00
M= [M]

N=N+1

Store A0O
Left Shift P

PFO

M=M+M11
M= [M]
Store All
Left Shif
Add Tap 1
N=N+1

t P
to P

PF1

Figure C-1.

Y

M=M+M11

Store All

Left Shift P
Add Tap 1 to P
N=N+1

M=M+M00
Store A0O
Left Shift P
N=N+1

SFO

Forward Moves

SF1

F028-29.00

M-M00<0? No

M-MOO+M11
M=M+A >
N=N+1
BF
M=M-MOO+M11 M=M-MOO+M11
M=M-M00 M= [M]
. . Store All
Right Shift P Store All
Add Tap 1 to P
N=N-1 Add Tap 1 to P _
N=N+1
N=N+1

BBO Q BLPF BLSF

Figure C-2. Typical Backward Move to Zero Branch

M-M11<0? No
| M=M-M11
Yes Add Tap 1 to P
Right Shift P
M=M+A N=N-1
N=N+1

BF BB1 °

Figure C-3. Typical Backward Move to One Branch

-21-

PDP-9, which uses an 18-bit word; all have a basic cost in the vicinity
of $30,000. Sequential decoding programs were written for each of these
machines. There was a substantial attempt to organize the programs for
the most efficient use of each machine's peculiar quirks, so the inter- -
nal organizations of these programs,fthough in general following the flow
charts of Figures 1 - 3, were often quite different. Optimization was
not pressed to the limit, but we would be surprised to find a program
more than a few microseconds faster than any reported here. Table II
gives the average time for a single decoder computation on each of these
machines, where the frequencies of the different move types were obtained
from the '"long search'" column of Table I. This table also includes com-
parable times for some other machines we have written programs for, for

comparison and general interest.

-22-

TABLE I

Frequency of Different Types of Moves (Percent)

Long Search 3000-Frame Average (4 comp/bit)
PFO 12.6 16.8
PF1 9.3 14.7
SFO 12.6 12.8
SF1 5.1 5.4
FB 11.0 10.0
BF 1.5 2.5
BLPF 1.7 1.3
BLSF 7.6 6.1
BBO 15.6 12.1
BB1 .23.2 18.2

-23-

TABLE 11

Average Time for a Decoder Computation, in Microseconds

Machine

DDP-516
Sigma 2
PDP-9
DATA/620

IBM 360/75H
IBM 7094
SDS 930
SDS 910-920

Time

26.
30.
49.

N O wn

31.0
50.3
201

APPENDIX D

STUDY OF A SPECIAL-PURPOSE SEQUENTIAL DECODER

In this Appendix we report the results of a preliminary design study
of a special-purpose sequential decoder capable of faster operation than
a small general-purpose computer, and quite sufficient for the on-line
needs of the Pioneer program, but by no means designed to do the ulti-
mate in sequential decoding.

The basic parameters of the design are matched to the Pioneer re-
quirements: code rate 1/2, constraint 1engfh about 25, 3-bit quantiza-
tion of the received likelihood ratios, and provision for operating with
a data frame structure of the order of 224 bits long, with fixed words
in the frame and with a simple parity check on seven-bit variable words
within the frame. With these parameters, and using currently available
components, it appears quite feasible to build a machine which will per-
form a decoding computation in 1 microsecond. This would permit decoding
512 bps data completely in real time with no appreciable degradation due
to computation speed. (Even 100,000 bps data could be handled with some
degradation.) Such a machine would imply a materials cost of about
$10,000 and would occupy about 11 inches in a standard relay rack.

It should be noted that several of the design parameters are quite
flexible, as will be seen from the detailed discussions below. Constraint
length of the code is variable at negligible cost. Code rate could be
decreased rather easily, with little change in the basic organization of
the machine, although at a noticeable cost. The degree of input quanti-
zation could be changed with minor design changes; chiefly an expansion
of the word length in the core memory, an increase in metric table sizes
and perhaps some additional constraints on the table design. Frame length
and format can also be changed without any major effect on the design.

Three speed regimes were considered in the study: slow machines,

with computation speeds of 10 us or more; a medium-speed machine with

-25-

computation speed of the order of a microsecond; and an Interim Ultimate
Machine, with the fastest possible computation speed, perhaps 100 nano-
seconds. These speed breaks are roughly determined by breaks in the
speed of components: slow decoders by classic 6-10 us core memories and
discrete component logic; medium by newer 0.6-1.5 us core memories and
the most common integrated circuit logic; IUM by the newest devices and
those which continued to be announced during the study, i.e., scratch-
pad memories, plated wire memories, multi-aperture memories, ECL logic,
fastest TTL logic, etc.

The slow decoder was adjudged to be properly the field for software
on mass-produced general-purpose computers, and not further considered.
Such decoding has been discussed earlier in this report. Virtually the
entire effort was placed on medium-speed decoders, where the study would
carry a high credibility (and validity); IUM effort was devoted to con-
sideration of direction of design effort, subdivision to faster and
slower sections, component surveys and follow-up, and so forth.

In the following we shall first consider the structure of the medium-
speed decoder in terms of its major components, then discuss these com-
ponents and their functions in more detail, down to the level of circuit
diagrams where appropriate, and present a tabulation of materials involved
in its construction. Finally, we shall discuss the problem of building

much faster decoders.

Over-all Structure and Characteristics of the Decoder

In Appendix A of this report, as well as in earlier reports, we have
discussed the nature of sequential decoding, and reference to those dis-
cussions will provide an appropriate background to the following discus-
sion where necessary.

A rate 1/2 sequential decoder operates by making tentative decoding
decisions, one by one, as it progresses through the data. By keeping
track of the likelihood of its over-all decision path, it can tell when
it has probably made a false decision and it then backtracks, as far as
necessary, to find better paths. Thus its amount of computation varies,

depending upon the amount of backtracking it must do. In order to avoid

—26-

hanging up on an overwhelming number of trials, when some particularly
bad received pattern is being decoded, we utilize the frame structure
of the data. Each new frame {(or some integral number of frames), the
encoder is reset to a known pattern (e.g., all zeroes) and the decoder
can start afresh at that point. If too many computations take place,

so that a frame is not decoded fast enough, the decoder simply gives up,
indicates a nondecoded frame, and starts afresh on the next frame.

At a decoding speed of 106 computations per second, with a data rate
of 512 bps, there is an average of 2000 computations per decoded bit
available. This is enough to make the probability of decoding failure
very small at reasonable operating levels.

The major components of the decoder are shown in Figure 1.00. We
here describe their over-all functions. How they are realized in detail
will be discussed later.

The memory receives input data from the receiver as six-bit words ;
three bits for the information bit likelihood measure, and three for the
parity bit. The memory also stores the decoder decisions, and they are
passed out from the memory to the outside world at the same speed as in-
put is received, but with a fixed delay equal to the number of bauds in
the memory and the replica encoder.

A faster memory is used as a buffer to store three words of data at
any given time, one the word being worked on, one the previous word and
one the next word. These words are shifted and exchanged for fresh ones
only at the basic 1 usec cycle of the core memory. However, access to
the current word is available almost immediately. Thus, computation can
start without waiting for the comparatively long access time of the core
memory .

The Control Logic box can be thought of as dominating the decoder.
For a decoding computation it makes a hypothesis as to the information
bit, and then feeds that hypothesis to a duplicate of the encoder which,
using previous hypotheses as well, computes the parity associated with the
information hypothesis. The hypothesis, corresponding parity, and data
word (six bits) are then used to enter a Table Look-up which puts out the

metric increment corresponding to its inputs. This enters a Fast Adder,

Input

F028-30.00

Memory --

input data and
decoded data

(lusec cyc

Output

le)

Metric [

Memory

3-Word Fast _%. Table Look-Up Y

Data

. i{s Metric
Input: data, hypothe51s A Fast
and parity Change | Adder
Output: metric increment

Metric
P + Metric Change

Hypothesis New

Control Logic -
Metric

Hypothesis
and Shift Commands

Forward-Backward Encoder

Parity

Figure 1.00 Overall Decoder Structure

-27-

the other input being the Metric (total metric from previous decisions);
the output goes to the Control Logic. Depending upon the value of the
metric plus metric change, the Control Logic decodes to move laterally
(try the alternate information hypothesis for that bit), move ahead, or
move backward, in its trials.

The over-all sequence of operations of these elements can be seen by
considering Figure 1.00 in conjunction with Figure 2.00, which is a con-
densed version of the decoding algorithm. (Figure 10.00 gives a more de-
tailed flow chart of the algorithm.) The language used here to follow
the algorithm treats separately each logical function. In the hardware
machine, however, no special command is needed to form parity, for ex-
ample, or test H=0.

We start by considering a forward move, entering Figure 2.00 at the
point labelled F. The first step is to hypothesize a zero (H=0) for the
information bit and compute the metric change this implies. The Control
Logic makes the hypothesis, instructs the replica encoder to compute
parity corresponding to a forward move with zero information bit, and
feeds the hypothesis for information, the parity, and the corresponding
likelihood ratios in the data word into the Table Look-up. The outpﬁt is
the metric change, and the adder forms the sum of the old Metric with the
change (A = M + M(DHP) in Figure 2.00, where M(DHP) means the metric
cﬁange corresponding to the Data, Hypothesis and Parity).

If the adder output is positive, the hypothesis is accepted and we
move forward. This involves putting the adder output in the Metric box
as the new metric, right-shifting the hypothesized bit in the encoder to
be ready for the next hypothesis, advancing the counter (N) which tells
where we are, and calling for the new data D(N) corresponding to the next
word.

If the adder output is negative, we try a lateral move, hypothesiz-
ing an information one. The box in the algorithm labelled H=0 tests that
we have just tried a zero. Since we have, we move upward on the figure,
hypothesizing a one, inverting parity to fit the hypothesis, and again
computing the metric change and testing it for sign. If it is positive,

we are happy and move forward, as before.

~28-

If A had been negative when we tried H=1, we could not accept the
hypothesis and must move backward. Checking that H=0, we move back by
left-shifting the encoder to bring the previous decoded bit to the front,
recovering the parity associated with it, decreasing the N counter by
one and calling for D(N), the previous data word. We are then at Point
B in the algofithm.

We compute the metric change corresponding to the DHP available
(this was our previously used metric increment when we moved forward in
the past), subtract it from the current Metric, and examine the sign of
the result. If the result is positive, we must try a lateral move if
possible. The new metric is entered in Metric, and we return to the H=0
question in the algorithm. If the previous decoding decision was a zero,
we will now try a lateral move, as before. If the previous decision was
a one, meaning the lateral has been tried already, we will move backward
again.

If, on a backward move we find that the recomputed metric was nega-
tive, we add 4d to the metric and move forward. This involves adding
to the output of the Adder (the recomputed metric) and putting the result
in Metric, right-shifting the encoder to compute parity for the forward
move, advancing the N counter and calling for data D(N) and re-entering
the forward move at F.

We have so far not mentioned how we take account of constraints on
the message, such as known bits within a frame of data, or a simple parity
constraint, such as a seventh bit parity sum on each six bit word. These
constraints are easily taken care of in the Control Logic which tracks
the constraints by their known position in the frame. Fixed bits simply
mean that at a node where those bits are being decoded, the information
bit is forced to the known value. The operation is essentially the same
as that discussed in Appendix A. Instead of trying both 'zero" and "one"
hypotheses, we use only the known value. A parity bit is similarly forced
by computing the sum of the decoded bits involved in it and using the re-
sult as the single hypothesis permitted at the corresponding decoding

node.

-29.

Design Considerations for a Decoder

In the following section we explain some of the most critical prob-
lems that would arise in the course of the design of the sequential de-
coder and explain some solutions to them. The solutions are worked out
in varying degrees of detail as necessary to show that the difficulty
is clearly solved. Where the practicality of a particular section of the
machine is involved, that section is designed and timing and wiring shown
for a commercial set of logic modules. The design of an actual decoder
to meet a detailed specification is thus brought closer to the routine
problems of digital design.

The major effort is applied to the critical elements of the medium-
speed machine of approximately 1 microsecond per node decision. For ease
of explanation this is first handled as a decoder taking a variable time
slightly over 1 microsecond on the average; this is implied in Figure 13.00.
There follow the specific complications needed to achieve a time of ex-
actly 1 microsecond.

Most of these considerations apply with equal force to the Interim
Ultimate Machine. However, the last section considers some of its pecu-
liar problems which are in general solvable by minor development rather

than off-the-shelf components.

The Encoder

The encoder consists of a shift register with certain bit positions
connected to a mod 2 adder to compute a parity bit, as shown in Figure
4.00. The incoming information is split up, being sent out on the chan-
nel as well as down the shift register. For each channel information
bit, the current state of the parity is sent out as the parity bit. At
the beginning of a coding block the shift register is forcibly set to a
fixed pattern which may as well be all zeroes. This does not disrupt the
flow of channel information bits or interrupt the parity flow, but that
first parity bit is computed as though the current bit were what it is but
all previous bits as far back as the register can hold them had been zero.
The coding block structure is thus not readily visible in the stream.

For convenience in.locating the coding block structure, it is made

-30-

coincident with the information block structure, which is of a suitable
length. When the decoder tackles a branch at the beginning of an infor-
mation block, it sets its own history register (of past hypotheses) to
all zeroes; when it is forced back to that point in a search for good
matching, it does the same thing. Whatever else it may do about that
back search, it obviously never carries back beyond the first bit of the

information block.

Decoding Action

A compact form of the decoding operation is shown in Figure 2.00.
This is closely related to the operation of the machine, and may be used
to follow the action in this description. The location of the data and
the computation results may be followed in the memory-encoder relation-
ship shown in Figure 13.00. Here the memory is shown in ring form. One
should visualize the ring as being stationary; an address number is as-
signed permanently to each location around the ring, which has six bits
for storage of the channel data and one bit for storage of a hypothesized
bit of the output stream.

Access to the ring is of two kinds, the slow channel access and the
fast node access. The channel input arrows indicate a slow regular pro-
gression around the ring (clockwise in the drawing). For each channel
information baud, the access clears out the six old bits left from the
last passage of the channel access and writes in the six fresh bits. At
the same time the output arrow reads out the hypothesis bit which had
been left there for it by the node circuit and wipes it off the memory.
Since one memory operation is used for both actions, the operation in
the conventional core memory is of the type known as READ-MODIFY-WRITE,
so that we read out 7 bits, losing the six old channel bits and sending
the hypothesis bit to the decoder output; then write in an unrelated seven
bit word consisting of the six fresh channel bits and a zero for the hy-
pothesis. The duration of this "slow'" operation is actually as fast as
the fast operations, about 1 usec. At its conclusion the memory is turned
over to the node circuit and will not be required until the next channel

bit entry time. A channel address counter is updated one count, ready

-31-

for the next channel access, represented by the channel arrows on Figure
13.00 jumping one step clockwise. Thus, the channel access slowly and
steadily progresses around the ring leaving a trail of channel data and
picking up hypothesized information bits prepared since the last revolu-
tion.

Between these brief channel operations the node mechanism has con-
trol of the memory and has been swinging about the ring jittering in
either direction. The six channel bits are consulted but not altered.

A copy of the encoder capable of two-way operation lays in the hypothesis
when going forward (clockwise); since this comes off the end of the reg-
ister, the length of the register is in effect added to the size of the
hypothesis memory which is thus longer than the channel memory by the
twenty-seven bits in the register. (This determines the constant time
delay at the chanmnel access between channel input and corresponding hy-
pothesis output.) When progressing backward, the H (hypothesis) bit is
fed into the end of the register to reconstruct the past states of regis-
ter history. The cycle for forward operation is: READ seven bits out of
memory, ignoring H and storing the six D (channel) bits in six latch cir-
cuits: WRITE seven bits consisting of the oldest H bit in the register
and the six D bits in the latch back into D. For reverse operation:

READ H into the end of the register and D into the latches: WRITE zero
into H and the six D bits back into D.

A separate node-address counter is used to control this access; it
is counted up or down after each branch operation as the algorithm deter-
mines the direction of the next node move. This counter is independent
of the channel-address counter except that coincidence of the address in-
dicates overflow. (A possible second exception occurs in the block

tracker if track is furnished externally; see the account of the tracker.)

Memory Size Considerations

The utilization of the memory by the channel speed circuits and the
node speed circuits is shown in Figure 11.00. Here starting from a common
point (the most favorable condition, with node caught up to the channel)

the node circuit jitters back and forth over a bad section, reaching its

-32-

maximum depth of backsearch at a time when the plodding forward progress
of the channel circuit has brought it around to the same point. If we
take as practical figures a channel rate of 512 bps, an allowable back-
search of 50 branches involving 500,000 separate branching decisions at

1 usec per decision, then the node circuit will run back 50 addresses in
500,000 useconds per baud, 250 fresh addresses. This unbalanced alloca-
tion of memory capacity has caused these two operations to be called Hare
and Tortoise in the internal project discussions.

From the simulations a memory size of 256 words was judged adequate.
Analyses made from the viewpoint of buffering blocks (on the common idea
of averaging out the effects of blocks which contain long searches) re-
veal that addition of large amounts of memory yield almost no gain in
relaxation of node speed for a fixed rate of occurrence of overflow (''dis-
card rate'). The effect may be viewed as increasing the machine's expo-
sure to such searches. Presumably the blockless view of Figure 11.00
will meet the same effect. This leaves us with a core memory of 256 words
of 7 bits each (probably 8 bits, to the nearest standard core size) with
a READ-MODIFY-WRITE cycle time of 1 usec.

Tracking

Acquisition and tracking of bit sync is done on the channel stream
prior to the decoder (as a whole) by the receiver circuitry which needs
it to quantize the output. This bit sync is assumed to be furnished to
the decoder, or if not, is trivially recovered.

Block sync is not utilized by the channel speed section of the de-
coder, which operates as a transparent fixed delay. Block sync is uti-
lized by the node speed circuitry where it is necessary for coding recov-
ery and helpful for forcing character parity onto the convolutional par-
ity estimates. Information from which block sync can be recovered is
available at both channel speed and node speed circuits. Hence, the
block tracker is operated at node-speed in the form of a counter updated
together with the node-address counter.

If block sync is recovered by the receiver, it will be handed to

the decoder at channel speed. It will be remembered that the two speed

-33-

regimes are connected only at overflow time. 1Initial block sync could
then be handed over to the node speed circuit by maintaining the over-
flow coincidence (blocking backward travel for the node circuit) until

the first block start is encountered.

Memory Tail

When the node circuitry is lagging almost to the point of overflow,
using channel bits laid down long ago and putting out hypothesized in-
formation bits just before the channel circuitry sucks them up, these
information bits are comparatively uncertain since the node circuitry may
decide it wants to do a backsearch on them. One might visualize a rule
that no bit be put out by the decoder which is not at least 50 bits behind
the node circuit at the time it is put out. This could be implemented by
a constant delay shift register at channel speed added to the channel
speed memory output. Logically this is unnecessary since any particular
bit is simply irrevocably committed to the shift register. An equivalent
action is to omit the shift register and tag the rest of the block in
which an overflow occurs. A suspect bit put out just in advance of the
node circuitry will find in the subsequent history either that the node
circuit will leave the vicinity and run on forward, in which case the
suspicion is disproved, or that the node circuit will in fact overflow.
The decision to use a shift register tail depends only on whether the
subsequent data handling can buffer a block to see if it is finally tagged

for an overflow.

Node Interrupt

The core memory has a single access point which must be made avail-
able to two circuits each steadily clocked at different rates. Designs
were considered for a fixed ratio, in which bit tracking at channel rate
would alter a common clock, preserving the count of a channel access
every 2000 node accesses (for 512 baud input); and also for an alterna-
tive asynchronous interface in which a channel demand for access would
momentarily interrupt the node access circuits. The second method would

have the advantage that the received baud rate need not be specified to

-34-

the decoder. However, this was not considered a large advantage in the
expected operation, when even for very long delays in response of a very
remote vehicle to commands to change data rate the time of response is
accurately known at the ground station. The method thought to be best
for simplicity of design with integrated digital circuitry was to run off
a fixed count of node accesses and have node count interrupt itself. The

incoming channel access would allow another cycle of node accesses.

Timing Within Node Circuits

Within the node circuitry a processor must extract data from the
memory, come to a decision about the current information bit and decide
whether to ask next time for the memory address one count forward or one
count backward from the one last consulted, all in time to be ready for
the next access. The circuitry for this processor is the common inte-
grated circuit digital logic often referred to as 5-megacycle circuitry.
This implies that flip flops can change and settle through a few levels
of gating in time for another flip flop clock pulse 200 nanoseconds later.
A typical action in the forward direction can be followed from Figure
2.00. After a forward access the encoder section hypothesized a zero for
I (information) and finds the associated P (for barity) based on the his-
tory of I. When it has been given the three-bit data on the Channel I,
it computes from that and the hypothesized I the corresponding I metric.
Similarly it finds a metric for P. The sum of these is the metric M for
the branch, shown in Figure 2.00 as M (DHP). It finds these metrics from
a look-up table in the form of a fixed network yielding the several bits
representing M when excited with DI and H or DP and P. The resulting
M (DHP) it then adds to the cumulative metric stored in a register to
yield the provisional sum, A. The test is now made on the polarity of A,
If the sum is still positive, then the zero is a successful guess for I;
the provisional sum A is declared to be the new value of M, the next move
is called for forward, the encoder register is shifted right for the next
P to be prepared, the node address counter is clocked one count up. If
the value of A is so large as to exceed A , the A is subtracted from

A. This is accomplished simply by restricting the value of A to a binary

-35-

number whose lowest digits are all zeroes, so that a normalized value of
A is obtained by forcing the highest digits of A to zero. 1If the polarity
of A was negative, then a trial is made from scratch with the value of I
at one, and the corresponding P. To save time in determining P, the
circuit takes the opposite of the first P. Thus I and P enter the table
through exclusive-or reversing circuits, operated by a flip flop whose
significance is Normal or Reversed polarity. If this reversed polarity

is successful, the I shift register picks up the reversed I for the sec-
ond stage of the register to preserve the result of the decision.

This examination of a node cycle reveals two major contributors to
the lapsed time, the look-up table and the adder. The design of these
was carried out in the midst of a rapidly changing technology of readily
available material, as both of these functions are common bottlenecks in
digital systems and component manufacturers are busy in these areas.
(The design of the medium-speed sequential decoder is predicated on the

use of readily available components of readily predictable behavior.)

Size of the Metric

The speed of the table and of the adder depend heavily on the size

of the metric on which they must work. This size was derived from figures
being used midway in the study; later considerations may reduce this
slightly. The accumulated metric, M, is the sum of many individual branch
metrics A M. The latter function is made up of AMI plus a MP
for any branch. These components run from +1/2 for a good agreement to
-16 for total disagreement between hypothesis and channel sample. Hence,

AM ranges from +1 to -32. The resolution of AM is determined by
the smallest increment used for ambiguous levels near zero; it was deter-
mined that this region from zero to +1 be taken to the nearest 1/16, which
requires 4 places after the binary point (analogous to decimal point).
The range of AM thus requires 4 places after the point, 5 places after
it, plus a sign bit, for a total of 10 places.

The accumulated M does not grow over the whole block, for in the
present algorithm (Figure 2.00) we subtract /A from a metric which has

successfully passed A in the forward direction. Here A 1is taken as

~36-

16, although flexibility for changing A is retained in the design.
However, if the node circuit finds a decreasing M leading to a valley
dipping below zero, it retreats back over the hill until it senses a
negative region behind it, adds A to the M at that point and runs over
the same ground, now increased by A . If it still cannot cross the
valley on positive levels, the process is repeated. These back and forth
searches occupy so much time that an allowance of 50 nodes back was set
for all factors affected by them. The maximum size of M is thus set by
the size of the hill one can elevate by this method in a back search of
50 steps. Ten bits before the binary point were allotted for this, and
of course it must retain 4 bits of resolution after the binary point.

The sign bit is a 15th bit but this is only an implied bit, as M is al-
ways positive. However, the adder must use a 15th bit, as AM has a
sign bit. Hence, we need a 15 place adder and a 10 bit table. The speed
of these elements was set as a reasonable fraction of a 1 us cycle by re-
quiring that each of them finish its operation within 200 nanoseconds in

expectation that a basic 5 mc/s clock will be used.

Numerical Notation

The value of AM may be positive or negative. These values are
added to M during forward progress and subtracted from M to retrace our
steps. To aid the easy changeover from addition to subtraction of values
of both polarities, we adapted the two's complement method of assigning
values in which negative and positive numbers form a continuous series,

swept from most negative to most positive by adding a fixed increment:

Sign and Absolute Value Two's Complement
+1 0 00000 00001.0000 0 00000 00001.0000

0 0 00000 00000.0000 0 00000 00000.0000
-1 1 00000 00001.0000 1 11111 11111.0000
-32 1 00001 00000.0000 1 11111 00000.0000

A positive metric can be made negative or a negative made positive
for subtraction on a reverse path by inverting all the digits and adding

the smallest increment, .0001. This process would normally take as much

~37-

time as a full addition, since the carries might propagate the full length
of the metric. Hence, when a metric is to be subtracted, it is used in
the one's complement for M, each digit being taken as inverse. However,
normal addition rules do not hold for this form. Therefore, subtracted
metrics are accompanied by a carry input to the first adder stage, just
as carries are used between stages; any propagation of carries runs con-

currently with those of the main addition.

The Table

The input table could be built very simply if it were built to ac-

cept a 4 bit input (3 bits of DI and 1 bit of I) and put out a 10 bit

ZSNH; entrust this to the adder; go back for the 4 bits of Dp and P,
and put out 10 bits of AMP; and let the adder add them. This would
lead to excessive delay in this addition prior to the trial addition of
M, or to excessive complexity in the adder by making it accept M, Z&b&,
and Aﬁh&,simultaneously. For this reason it was decided to run the
table as one large table accepting DI’ Dp, I and P and yield the 10 bit
over-all AM immediately. We examined the table in some detail, as
with all elements which could be foreseen to lie on the critical time
path.

As it became obvious that high fan-out and fan-in were important
elements of the table, we did the first tries with DTL logic rather than
the cheaper RTL. The characteristics of the Fairchild 930 series were
assumed. To avoid the controversy on the reliability of the DIP package,
still raging now as strongly as at the beginning of the study, we re-
stricted ourselves to forms available in the commercial temperature range
hermetically sealed flat packs. The line is usually quoted as leaving
30 nanoseconds maximum delay per gate, with a fan-out of 8.

(Several varieties of Read-Only Memories were investigated as an al-
ternative for this table but were too expensive, too slow, or too special.
For the medium-speed decoder rapid availability and predictability of the
components was considered primary. Among these forms were core memory,
integrated diode blocks, MOSFET arrays, multiaperture memories, plated

wire memories, and printed circuit induction. Some of these were

-38-

considered more favorably for the main memory of the Ultimate Machine
which was examined in less detail.)

Several methods of organizing the memory were considered and sketched
out. If we take an 8-pair input (8 bits plus the inverses), develop 256
intermediate lines for the possible varieties of input, and fan these
into 10 output lines, we have a very fast device (3 gate levels) but with
illegal amounts of fan-out (heavy load) and fan-in. If we subdivide this
into two halves, each of four bits (one for I and one for P) yielding 16
variety lines each, then combine these in 256 2-input gates (each variety
line running 16 inputs by being split into 2 I or P line drivers) of in-
verse polarity, then gather these into 16-input NOR gates for inverse
polarity (normal NANDS) which are double-inverted into another rack of
NOR gates feeding the ten output lines, we achieve a structure at once
large and slow. In fact, the material would equal the cost of a core
memory .

Organization by coincidence on a 16 x 16 matrix would require a gate
per intersection, with large size and illegal loading. This organization
is that of core memories and reminds us that core memories are feasible
in that organization only because of the small cost and interaction of
the element at the intersection.

The final solution took advantage of the individual nature of the
table. There are 8 varieties of DI’ each matched to 2 values of I to
yield 16 varieties of zlhﬁr However, the mirror symmetric value of DI
when associated with the opposite assumption of I, yields the same metric.
Hence, we can combine at one point (one multi-input gate) a value of DI
and I, and the value of the opposite D; and the opposite I. Moreover,
having done the same for P, we find that the final metric for a high
likelihood I and low likelihood P is identical with the metric for the I
and P in exchanged likelihoods, rather like a commutative rule. The in-
fluence of fan-out limitation even at 8 is seen by the resultant struc-

ture; three DI bit pairs run 8 NAND gates for D., while three DP bit pairs

I,
run 8 NAND gates for DP; each of these 16 gates drives 4 inverters for DI

or DP; each inverter ready to run 8 inputs. The inputs for I, f, P, P

each run 4 inverters, each of which runs 4 inverters, each as I or P

-39-

ready to run 8 inputs. The central part of the table has the 36 possible
values of metric; thus the same metric is given by a #7 DI associated
with T =1 (likely) and a #8 Dp with P = 1 (very likely); or a #7 DI I

#1 Dps P = 0; or a¢2DI, I=1, #8 Dp>s P =1; or #2 D;, T =0, #1 Dp, P =

Another four combinations are represented by the commutated case, begin-
. P -

ning #8 DI’ I =1, #7 Dp,

is a 4 input NAND gate fed by appropriate values of DI’ I, DP' These 8

gates feed a gate (used as NOR, with inverted inputs) whose output signi-

P = 1, for a total of 8 cases. Each of these

fies one of the 36 values of metric. Each of these is run through an in-
verter and feeds the 10 NOR gates gathering terms for the 10 bits of the
metric. Eight of the 36 metric gates have only 4 input conditions, as

their commutated arrangements are unchanged; thus, for example, #7 D_,

I
I =1, #7 D,, P = 1, located on the diagonal of the imaginary table.

The]azt stage in the development of the table is shown in Figure
9.00. Here a large saving in the fan-out was achieved by first combin-
ing the identical cases of (for example) #7 DI’ I1=1 @ith #2 DI’ I=20
to forma A M, level. These eight A M, levels combine with eight

A Mp levels at the same set of 36 metrics, but with fewer combinations
reducing the load on each of the contributors, making the load-sharing
inverters unnecessary. The added A MI - A Mp level does not add a
level of delay, as it replaces the fan out inverters in the timing sched-
ule.

The final bit gates gather the sets of one's and zeroes from the
metric levels arranged in order of size on Figure 1007. These values are
somewhat arbitrary here and were computed on sets of A MI and A MP

as follows:

D, I AMINmmm' AMIVMue
111 1 111 +0.5
000 0 110 +0.4
etc. 101 +0.1
100 -0.1
011 -1
010 -3
001 -6

000 -16

o ap———

I

-40-

The resultant AM values run from +1 to -32 and form a 64-square
array whose corners are +1, -15.5, -32, -15.5. Values are duplicated ex-
cept on the diagonal A MI = A M,. These values were expressed in
binary form to the nearest 1/16 in t;o's complement form. Since the 36
metrics occur in inverse voltage, the 10 output bit gates are NOR struc-
tures. If the metric has a 1 at a particular bit, we tie it in and the
output is TRUE. A metric gate with a fan-out of 8 is not called on to
drive all 10 outputs as none of the metrics has all one's.

Both the output bit and its inverse are made available by the use of
10 inverters. We can take advantage of this necessity to keep the fan-in
within legal limits. The bit gates are limited to a fan-in of 20 inputs.
Some of the bit positions have one's represented at more than half of the
36 metrics. For these bit positions we make the meaning of the bit gate
a zero and gather inputs from the metrics with zero at that position.

The fan-in thus cannot exceed 18 for any table and for this table does
not exceed 16. The bit gate output is used instead of the inverter out-
put and vice versa.

The output of the table is used only for addition in the forward
direction and only for subtraction in the backward direction. Hence, the
control from the Forward-Backward flip-flop is used to switch on the set
of bits or the set of inverses. When inverses are used, the function
Backward is used as a carry input to the first adder stage to complete
the two's complement process of inversion. If the table had been itself
arranged in one-complement fashion, so that a negative number to be added
would need the carry as well as a positive number to be subtracted, this
would have been handled by taking the carry bit for the adder from the
sign bit of the table.

The speed of the table: From the time of delivery of D from the

memory, the logic settles through 6 gate levels in the final minimized
table to the inverse metric bits. The DTL 930 series proved too slow to
make a 200 nsec decision available, despite their identification as 30
nsec maximum delay units, as they may take up to 80 nsec in the positive-
going direction when lightly loaded. For this reason the greatest part

of the gating is specified as the Texas Instrument TTL logic, 7400 series

-41-

flat pack in commercial temperature range. These are competitive in
price, have a fan-out of ten, and maximum delay of 29 nsec. The 7400
gates cannot be connected in the wired-or configuration but the line has
an equivalent in the 7450 and 7451 AND-OR-NOT, which similarly allows
this function to be performed at the 36 metric gates with a single gate
delay. Even before this decision the 10 AM' output bit gates were
specified as TTL to ease the interface into the adder which had concur-
rently developed into TTL logic. The sole remaining DTL logic is at the
10 AM gates which require a larger fan-in than is available in the
7400 series. (The Sylvania SUHL TTL has a high fan-in gate but is not
compatible with the 7400 and information on this broad line, whose cata-
loging was recently revamped, was incomplete during the study.) The DTL
gate, specified on the drawing with the T.I. numbers 15830 and 15833 for
uniformity, is the commercial range flat pack. External load resistors
are added to bring the worst delay to 35 nsec. The net delay is 180 nsec
to A M' bits from arrival of D from memory, or 29 nsec from Backward-

Forward decision.

Adding A

When A is added instead of a metric, it always happens on a back-

ward move, when a trial subtraction of the metric would have given a
negative M. The trial subtraction is of a metric originally added on a
forward move, which must therefore be less than +1. Since A will al-
ways be specified to be larger than +1, the M from which the trial is
made is less than /A . Hence, the higher binary digits of M are then
all zero. The low digits of A are all zero, and so generate no car-
ries on the addition. With A a power of 2, it would be a simple ap-
proach to add A by forcing the appropriate bit of M to a 1, bypassing
the adder and avoiding having to fit this process into the same inputs
as the table usually occupies. The danger of such fitting would come in
a design involving another level of gating, with attendant delays for
the normal table operation. It can be seen from the design history of
the table that such trivia as gating of alternatives or coming out with

the correct polarity are really major elements of the design. The

-42-

operational problem in forcing only the A bit to one would come on
backing down to the beginning of a block. Here one may have to back
down to this point more than once to clear a deep valley in the M se-
quence. On the subsequent additions one is dealing with a remainder
larger than A . The forcing approach would then require that an arti-
ficial region behind the first bit of the block be entered, subtracting
out A instead of any metric on back moves, forcing A on the turn-
around, and adding A as an artificial metric on the forward moves.
This artificial metric, however, is what we had been trying to avoid.
The solution was offered by the AND-OR-NOT structure of the 7400 logic
which allows us to replace the output bits of the metric table with the
value of A without incurring another gate delay. This function is in-

corporated into the output AM' gates in Figure 9.00, with all zeroes

2

except a force to 1 on the DTL gate of the 9th bit, for a A value of
+16. An otherwise unnecessary gate is shown at the ninth bit, with a
dotted connection, in case other values of A are required. A value of
+8 would be handled similarly at the 8th bit; smaller values would be
forced at the TTL metric inverter as these bits gathered one's rather
than zeroes from the 36 metric levels. The addition of A then would
proceed in normal fashion from the table outputs. Time from Add

input: 93 nsec. The component count is 15 7400, 16 7420, 10 7450,

9 7451, 5 15830, 14 15833 and 5 7460, for 75 chips.

The Adder

Binary numbers may be added slowly by running their bits sequentially
in corresponding pairs through a one-stage full adder, retaining any car-
ries until the next pair. The fastest rate available per bit is the set-
tling time of the carry which is conventionally 3 gate levels. Any at-
tempt to speed the process up by using as many adder stages as bits and
hitting them in parallel is completely defeated by the necessity for

letting some carries ripple down the adder.1

l1f a variable time is permissible, one may build an end-of-ripple indica-
tor to allow operation to continue whenever the addition is complete. Over
the long run one averages a ripple time of qu stages or about 4 adder stages
for this problem, about 348 nsec TTL or perhaps 660 nsec DTL. Not only is
this average too large but the variable addition time was felt to be inap-
propriate for the rest of the circuitry being planned.

43

The literature is full of solutions to this classic problem, going
back to Babbage. Only two seemed capable of 200 nsec operation with
standard speed I. C. modules and construction:

a) A two-pulse adder using redundant multi-valued notation which
would need translation to single-valued form for any reasonable
table look-up, the translation taking the form of a conventional
adder. Because of the frequent translations, this would be use-
less.

b) The use of special high-speed circuitry to bypass the carry
within the adder stage. We lacked this flexibility, using
available forms.

The problem is eased by the fact that, from the algorithm on Figure
2.00, only the sign of the answer need be known before the decision is
made to re-access the memory. If the sign is known, the addition and
subsequent entry of the answer A as the permanent M can be carried out
while the memory is getting access to the next node. Hence, we designed
an anticipation network capable of forecasting the sign of A in 87 nsec
after a metric is presented; the adder would use a system of clustering
stages by 5's, anticipating the carry of a cluster and propagating the
carry down the cluster. Approximate time to the sum A was 435 nsec.

At this point in the study, this work was obsoleted by Texas Instru-
ments' announcement of a set of fast adder chips, using the method b)
above, all performed within the chip for several stages. The 4-stage
7483 was available only in the DIP package but the 2-stage 7482 is avail-
able in flat pack, and yields the second stage carry faster (from an in-
put carry) than a single bit delay. This was worked into the form shown
on Figure 8.00, where time to the last bit is 204 nsec and the carry is
speeded up slightly by the gating network to be available at 193 nsec.
The form of this gating network may be followed from the fact that the

A M input has a limited range so that its high order bits are simply

the same asl its sign bit. The first stage and carry input of the 7482,

1This "same" convention was chosen so that the negative sign for the
table would be a 1, available for use at the first carry input instead of
BACKWARD if a one's complement table was decided on.

-44-

running the fast carry circuitry, represent four normal loads, which
requires the double inverter on the z&_MS input. The output A bits are
fed to the M latch circuits; if it is decided to set M = A, the M clock

is activated.

Parity Generation

The 15 parity terms are shown in Figure 4.00. A parity of 1 indi-
cates an odd number of 1 terms. One could have a number of gates of 15
inputs, showing the one way of having 15 1's, the 210 ways of 13 1's and
2 0's, etc., all OR'd together, but this is not only a huge number of
gates but requires a fan-in of 15 at the first level and a monstrous fan-
in at the OR. On subdividing this structure, we find that gathering terms
by 4's still requires too big a fan-in at the OR. Gathering by 3's gives

's
fan-in and acceptable loading on the source.

[aW

00

o

The gating used first gathers up the parity in 3 terms. There are
5 such parities developed. Using the TTL AND-OR-NOT form, they take only
1 gate delay, 29 nsec. We gather up an even number of ones for this form,
since the gate then inverts the answer. Using the parity and parity from
these first levels, we repeat the process at 2 second levels where we
develop the parity of the first three parities and the parity of the last
2 parities. In order to avoid the delay of an inverter to get parity, we
duplicate the parity structure for inverse inputs to get even parity,
which is parity. The second total delay is 87 nsec to this point; the
restrictions on the design having been to minimize the number of succes-
sive levels and the number of inputs per gate, rather than the more usual
total number of inputs or total number of gates.

For loops in which the first hypothesis for H is unsuccessful and
we must reverse it, we wish to avoid the process of setting the reversal,
having it take effect at H, and then letting the result ripple down the
87 nsec generator. The resultant P is always the reverse of the initial
P, so that we can save time by applying the reversal to P itself. This
is shown (in Figure 14.00) by making reversal one of the inputs to the

third level of the generator.

—45-

Speed of the Algorithm

The consideration of the medium-speed decoder was at this point
divided into two subsections; first, a simpler system using the natural
access time of the core memory, and leading to a variable node time
averaging slightly in excess of 1 microsecond; and second, a fast access
system holding all node times to exactly 1 microsecond. Timing of the
natural system is examined first.

The memory was assumed to be one which has a basic cycle of 900
nsec; 1000 nsec cycling in the READ-MODIFY-WRITE mode; and 350 nsec ac-
cess time (one of the advantages of the fast access system is that the
natural access time ceases to be an important parameter). The model
here is the Electronic Memories Nanomemory 900.

We assume initially a basic clock rate of 5 mc. Not every 200 nsec
period has a clock pulse output; for example, the table feeds into the
adder without the necessity of clocking. At 350 nsec, D is available
from the memory for application to the table, asynchronously. I and P
are already present there; note that the speed of P generator is not
critical in this application as long as it is less than the access time.

At 530 nsec A M is ready. The sign of A, A., is ready at 723 nsec.

At 752 nsec AS has been gated with other appripriate factors and is
ready for a decision.

If the first try, H = 0, is successful, the 4th clock pulse at 800
nsec interrogates the decision, which is for a forward access and right
shift. This is a true pulse. The pulse will pass the gate and last from
829 to 849 nsec; its trailing edge shifts the H register which is settled
down by 899 nsec. At the same point, the memory address counter has set-
tled to its new value. M has been set to equal the trial metric A, and
is also ready by 929 nsec. The new value of H is automatically zero, by
the shifting process. At 1000 nsec the new memory access is initiated
again., Meanwhile, the D values were rewritten into the memory and the
oldest value of H written in by a gated pulse from 429 to 592 nsec as re-
quired by the core memory. (The circuit needn't wait for the decision on
H, as it isn't the current value that is entered into memory but the old-

est bit from the last forward node operation.)

-46-

If the try H = 0 is unsuccessful, the 4th clock at 800 will not
shift but will initiate the reverse I and P examination. The new H will

be ready at 858, A_ at 1231, gated at 1260, interrogated by the #7 pulse

at 1400 and the me:ory addressed again by the #8 pulse at 1600. Since
the H = 0 case cycled in 1000 nsec, the average node time on a forward
step is 1.3 microsecond.

To improve this time, we may vary the clock frequency to take advan-
tage of the long pauses with data ready before the clock strikes. We
need not restrict ourselves to addressing in 1 microsecond for H = 0 if
thereby we can lower the average time by speeding up the H = 1 cycle.

We call operation at 5 mcps mode 2: interrogating 0 at #4, addressing
0 at #5, interrogating 1 at #7 and addressing 1 at #8. Results of some
other modes are given below. These are for the fastest clock rate pos-

sible for the particular mode; a slower rate in each mode will merely

increase the cycle time in direct proportion to the clock period.

Try Address As Try Address Average
Mode Period Rate 0 0 Gated 1 1 Cycle

1 251 3.98 Mc #3 #4 1213 #5 #6 1255
753 1004 1255 1506

2 200 5.00 #4 #5 1260 #7 #8 1300
800 1000 1400 1600

3 167 5.98 #5 #6 1295 #8 #9 1253
835 1002 1336 1503

4 154 6.49 #5 #7 1230 #8 #9 1232
770 1078 1232 1386

5 151 6.62 #5 #7 1215 #9 #10 1284
755 1057 1359 1510

6 125.5 7.97 #6 #8 1213 #10 #11 1143
753 1004 1255 1380.5

Other modes are possible, and this is not a complete search. A per-
iod of 125 nsec is perhaps hazardously short, so that the mode 4 is per-
haps the optimum. The time is sensitive to exact memory performance;
note that if the memory could be recycled in 924 nsec, the clock rate of
mode 4 could be used in mode 3, with an average forward cycle time of

1155 nsec.

-47-

Cycle times for Backward moves will average slightly longer, owing
to the moves in which we move back on an old zero, fail to get As nega-
tive, must set M = A and then try 1, fail again and continue backward.
Setting of M = A runs concurrently with trial of 1. These figurés have
not been calculated but will run perhaps 100 nsec longer. The average
time over-all will be close to the averages of backward cycle times and
forward cycle times (for the high error rates under discussion) since
the node circuit will spend most if its time in long forward or long
backward searches, with few reversals of direction and only slight forward

bias (from simulation results).

Medium-Speed, Fast-Access System

We can hold the cycle time of the medium-speed decoder to exactly
one microsecond by doing away with the effect of the long access time to
the memory. Figure 12.00 shows the required arrangement for channel bit
access. An immediate access section, i.e., about 70 nsec, is used as a
Y“hot memory." This consists of three-stage shift registers, six abreast.
The central stages are the current D. At address time the hot registers

shift so that Dn+ shifts to center, Dn to the right stages, and D is

n-1
into the left stages. At

1

wiped. At access time the memory puts Dn+2
write time the memory accepts Dn from the right stages, into the cores

just vacated by Dn+ The hot memory is thus in series with the main

memory ring. The piocess makes it unusually clear that the core address
number is simply an address, and not the identification of a branch. As
the search continues forward, the looped connection to the hot memory
slides around the ring, with the bulge of three nodes maintained up to
date within it, giving Figure 12.00 the appearance of an orange being
swallowed by an ostrich.

The parity generator timing now becomes a critical item. A small
hot memory is constructed for this in the form of a parity generator pre-
paring parity for the next move if forward and one preparing what it
would be if backward. Parity itself is then picked up in a flip-flop on
the memory address time. For backward moves the old H is one of the

components. A new Forward-Backward level must be added to the parity

-48-

gates bringing the time to 116 nsec, but this is now not critical in the
1000 nsec cycle.

With the series hot memory two complete table lookup and adder opera-
tions may be fitted into the 1000 nsec cycle. Detailed timing has not
been worked out but any small interference in clock spacing can be over-
come by the following modification. Break the table at the 36 metric
gates. Add a level of gating to provide Normal connections as drawn and
Reverse connections from mirror image metric gates. This will slow up
the initial trial of H = 0 but greatly speed up the process of then find-
ing the metric for H = 1. The use of separate tables would yield even

more time margin but is unnecessary.

Estimate of Material for Medium-Speed Fast-Access Decoder

The following summary shows estimated value of the memory and of the
integrated circuits for the decoder. The integrated circuit estimates
are known with some precision for the adder, table, and parity gating
since these were investigated in detail as items of critical timing.

The parity gate of Figure 14 is doubled on the summary to represent the
double choice available for the next move in the rapid access scheme.

The asterisks for 7451 circuits indicate that spare circuits are avail-
able for these functions from 7450's in other sections; no 7451's are
actually used. Current Texas Instrument prices are used, but items simi-
lar to the 15800 line are widely available. The summary uses price
breaks for the quantities indicated for one decoder.

The memory indicated follows the size of a standard 3C memory of
similar capacity, but the price indicated is intended to represent a gen-
eral class of 1 microsecond memories and is not based on a formal quote
from any manufacturer (we are awaiting these).

The cost of packaging the integrated circuits may be estimated based
on the common arrangement of cards plugged into files with back-plane
wiring. This arrangement is especially useful for one-off manufacture.

A survey of a variety of such lines shows a card cost of about four times
the cost of the integrated circuits, for a total of about $5,000. Special

card design costs will amount to about $500.

-49-

The total number of cards will run to perhaps 75, which will fit
into a 3C Type BL330 Cabinet and require a power supply similar to the
3C PB331, mounted within the cabinet.

The Memory Cabinet is about 12 1/4" x 5 1/8" x 8 1/2" and occupies
one-half of a relay rack space 5 1/8'" high. The Main Circuit Cabinet is
about 12 1/4" x 5 1/8" x 17" and occupies a full relay rack space 5 1/8"
high.

TOTALS: Logic Cards $5,000
Card Layout Costs 500

Memory 3,000

Memory Power 200

Main Power 365

Main Cabinet 345

Clock 250

Total Material $9,660

Summary--Medium-Speed Sequential Decoder

MEMORY

-50-

1 256 x 8, 1 us Core Memory in 3C BM335 Case;
1 Power Supply PB330, 3C

CENTRAL PROCESSOR

$3,000

200

SN7400 7420 7450 7451 7460 7430 7482 15830 15833 7472
Look-up Table 15 16 10 (9)* 5 0 0 5 14 0
M-Store 9 0 0 0 0 0 0 0 0 0
Adder 15 0 0 0 0 2 7 0 0 0
BRANCH TRACER
H-Store 20 0 0 0 0 0 0 0 0 26
Parity Generator 2 0 30 (2)* 58 0 0 0 1
Rapid Access
Memory 63 0 0 0 0 0 0 21
Clock Drive 10 0 0 0 0 0 0 0
Control Logic 5 0 0 0 0 0 0 0 4
MEMORY ADDRESS
Tortoise 0 0 0 0 0 0 0
Hare 0 0
Detect & Drop 8 8 0 0 0 0 0 0 0 2
BLOCK SYNC
Block Address 0 0 0 0 0 0 9
Block Key 5 0 0 0 0 0 10
FORCE
7th Bit Force 2 2 4 0 0 0 4
Force Block 4 0 0 0 0 0 0 0 0
TOTALS 167 26 44 0 63 2 7 5 14 95
Total Chips: 448
UNIT PRICE 2.50 2.90 3.20 3.65 2.30 3.65 8.60 3.90 3.45 3.50
TOTAL PRICE 417.50 75.40 140.80 0 144.90 7.30 60.20 19.50 48.30 332.50
Total Chips: $1,246.40

-51-

The Ultimate Speed Machine

A speed gain of about 3 or 4 is obtainable in the digital processor
by use of ECL leogic (RCA, Motorola, Fairchild); perhaps a little less by
use of extra-high speed TTL (Texas Instruments, Sylvania SUHL II). The
exact gain in speed becomes harder to predict and dependent on the physi-
cal packaging. This high-speed logic may be used with standard core memo-
ries of perhaps 650 nanosecond cycle time (750 nanosecond READ-MODIFY-
WRITE) and maintain the speed advantage by the use of a block hot memory.
Unlike the series hot memory described above, this would pull out several
nodes' worth of data at a time. For example, it might practically pull
7 bauds of 6 bits into a hot scratchpad divided up 7 bauds wide each side
of the current baud. The core memory would thus be organized with a 42
bit word structure. The node circuit could then jitter about within the
14 baud region at high speed. On reading one end, the other half would
be dumped back into the main memory, the 7-baud half retained as back guard
for the current node, and the empty half filled with the next 7 bauds x
6 bits from main memory. The net gain in speed from bursts of 7 baud
searches has not yet been simulated but should be appreciable.

For high speeds, one may well wish to alter the nature of the main
memory, as well as its organization. Consider the Raytheon Biax memory
which has Non-Destructive Read-Out at a 300 nsec cycle time. This could
be used for the node speed access which needs NDRO operation or must
simulate it by rewriting. These memories are organized in linear select
mode rather than coincident current; this allows the economic arrangement
into the large word size with the small number of words required for the
block hot memory scheme. At 300 nsec node cycle, it might prove worthwhile
even without block hot memory in an upgraded medium-speed decoder. The
present difficulty with this memory is that the write mechanism lasts 10
microseconds. The write mechanism would only be used by the channel rate
circuits; but even for these at a one-megacycle channel rate, we must be
able to write a 7 baud word (7 microseconds real time) in a very small
fraction of 7 microseconds to allow interlacing with the node speed ac-
cesses. The write speed restriction is not inherent in the memory but
development would be needed to obtain the needed write time of perhaps

700 nsec.

-52-

Another future possibility lies in the plated wire memories of
Librascope - (General Precision). These are Non-Destructive Read-Out
with 1006 nsec cycle, are most naturally organized in linear select for
large words (although at this speed a block hot memory is probably un-
necessary), and can write extremely fast. In addition, the planes can
be woven into permanent read-only memories for use as the look-up table,
or may be most conveniently built for that service as read-only, electri-
cally alterable. 1In the latter form the write circuits are commutated to
follow, for example, a punched tape input to alter the metric table to
suit altered channel conditions. The restriction on these memories 1is
that the manufacturer offers only the memory planes. Complete memory
systems would have to be developed, a condition we decided was unsuited
to medium-speed decoders but tolerable in the ultimate speed machine.

In addition a large set-up charge is made for the automatic loom if non-
standard planes are desired.

~ The final element examined was the fast parity generator. Buffering
the parity gates into a flip-flop provided quick access for the medium-
speed decoder, but the size of the gate structure would begin to restrict
the clocking rate in a high-speed machine. For this reason a generator
was developed with only a single operation between clock pulses.

The basic scheme is shown in Figure 5.00. The generator is a 14-
stage shift register, coupled through exclusive-or circuits. On each
shift, another of the 15 terms of parity is added in. If P__ is in ques-

25

tion, the terms range from I1 to 125, as seen in Figure 4.00. When I1 is

located in the 14th stage of the I register, it is impressed on the A
stage of the generator. At the clock it enters A (and the 15th stage of
I register). 12, the next term, is now in the 14th stage, so that the
modulo-2 sum of I2 and I1 (in A) is impressed on B, and entered on the

next clock pulse. Finally, all the terms but 125 are present in the left
stage of the generator while 125 sits in the left stage of the I regis-

ter. I25 itself is not needed yet as a component of P25

initially and in fact is not available for that service.

as it is always O

This generator is adequate for forward-shifting I registers. How-

ever, the I register may be called on to shift backward, and even to do

-53-

so after all the terms for P25 have vanished into the main memory. To
allow the process to work either way, more stages are added in which

first the '"final" value of 125 is added to st and then at each step an-
other component is stripped out as the partial P25 passes down the genera-
tor. This is shown in Figure 6.00. On shifting to backward motion at

any time of this process, the stripped components are reinserted from
their new locations, as shown in Figure 7.00. This shows the same stages
as the forward drawings, but with a second set of I register inputs. In

backward travel, P__ must reflect the actual condition of I since the

25 25
algorithm decides whether to alter it. Hence, for forward travel we read
125 and P25 at a and M, but for backward travel at b and N, the latter

containing the full value of P25. That is, it contains the value of 125
at the time it is read. After passing backwards, the components are
stripped off again in reverse order by double addition (A + A = 0).

The table on the next page shows a forward-backward-forward sequence
with this shifting pick-off point. It also shows how the original value
of 125, called 125—a’ is caught on the backward move and altered to 125-b
while the effect of I is removed from both P__ and P26 (in which 125

25-a 25
enters as I 4 does in P The asterisk shows the stage being used for

2 25)'

read out.

The complete schematic for the generator is shown in the two sheets
of Figure 3.00. The only points of design interest here are that the I
register is coupled by NOR circuits rather than the expected NANDS, so
that Backward and Forward feeds to the parity register may be kept sepa-
rate. When the Backward drive is in use, both FI and FI drives to the
registers go false; thus, at the parity stages joint exclusive-or input,
the forward section of the parity coupling is simply out of action. Be-
cause of the NOR action as an inverted NAND, the function Backward is
supplied to the actual forward coupling and vice versa.

A more subtle point can be followed on Figure 3.00 (and 7.00). The
Forward-a component applied to parity stage N is the exclusive-or version
so that the final value of I can enter them into P

25 26°

stage 0 to enter into P However, the backward-b component applied to

25°

i
and into parity
parity stages N and M is the plain b, not the exclusive-or version, since

\

-54-

it is the old value of 125 that we wish to remove from P and P a

25 26 "
back move. The arrows from stages a and b in Figures 6.00 and 7.00 show

this distinction.

-55.

Nnm .o N DR HN ..
§f9r°c €PTTAST | €7 xbT 92 €¢ asz 9¢ 2T v AST | TT €T T AST 9T LT Z+N d — X
SIEE
AR T B RE AR 7N (AR A Y4 ZT vz ast ---- -T2 22 €T ¥T QST «9¢ T+N d L X
demg
Mq.w.... NqM...MN .ﬂnN...NN vz —— e —— o --12'° 7z €z vz 4asz N q l QUON
1°C
vt €V vz | 2°eT ST BST ZZ «¥T ®ST ---- --12°°7C €T v ®BST 9¢ N 4 — X
z ‘¢ -127°2e demg
§°9° e v'STUBST | €°%TT¥Z 9T | €T xBST 9T | T TT vT ®ST €T ¥Z ®BSZ x9T LT T+N g SUON X
z ‘¢ | SR A4
§'9c v°STBSZT | €70 «bZ 9T | "TST BST 9T | T TT ¥T ®BST €T ¥T ®SZ 9T xLT Z+N d L S X
vl €V vz fzetrgziese |1efzzivziese -=-- -12°°22 €T ¥T ®BST +92 T+N d —e X
gy AR YAl I C AP 4 Al 14 === ---- == 12 22 €T VT ST N d — X
N.MLL\“a H.N.vams ~-%- - =--- Rt YA £ A YA £/ I-N d — o X
9z, Z,
4 H 524 N) 0 0 Y
1 W N 0 d 2 q 1 ssaappy |(uor3ioaxi(q asInd S$S920Y
S31U931U00) X33SI89Y J 1u23u0n I93sI8oy 1 AIOWSp 1SEeT] 3JTYS AIOWS

*

R (1,A) = A
R (MA) = [A]
WHERE M< A M

FPOLDOUT FRAME

*/

/

/ | 6 5 o
.
1 ™
F
H=0
H=I A=M+O] RSH H | N=N+!
= jlf—"-—————
A= M+M (DHP) boB ¥ ¥
M=A | FORM P| D=D(N
NO
AZ0
YES
*
A=R(MA)I RSH H| N=N+ .
¥ b ! A=M-M (DHP)
M=A [FORMP| D=D(N) FORM P | D=D(N)
k) -

6

1

REVISIONS

sym][zone |

DESCRIPTION _| oate | apPROVED

FOLDOUL FRau® 2

H Z

D

PART OR
IDENTIFYING NO. I PART NO.

NOMENCLATURE OR DESCRIPTION I

PARTS LIST

KEY: *-VENDOR ITEM-

APPLICABLE DOCUMENTS

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES

“AWKELLAWAY 4%&¢7

CODEX CORPORATION
222 ARSENAL STREET
WATERTOWN, MASSACHUSETTS

TOLERANCES CHK W& 4-39-67]

ANGLES =

PFD 30-¢
DECIMALS A QG 430747
2 PLACE +
APPD

3 PLACE = M 430449

FINISH MATERIAL

NEXT ASSEMBLY | MODEL

SEQUENTIAL DECODER

COMPACT ALGORITHM

Seap | FO28 -2.00
NONE] TsHeer | oF

I

I 1

FOLDOUT FRAME]

M\ _ W
AN Aﬂm
oC

[a]

a

<C

w\x] >—
< »

@]

|7

I <

S | S * ®

REVISIONS
sym| zone | DESCRIPTION [oate | apPrOVED

w >

I
JSAw)

f
%
L ||

= =
|

ISBE

XCxomm

Z

‘FOLDOUT FRANE <

| > | cooe PART OR w iTem
G| (oent l |DENTIFYING. NO. [PART NO. l NOMENCLATURE OR DESCRIPTION Ig ' NO.
PARTS LIST
KEY: *.VENDOR ITEM-

APPLICABLE DOCUMENTS UNLESS OTHERWISE SPECIFIED DR DATE

DIMENSIONS ARE IN INCHES S TRUE 4-26-€7 COBZEZXAR(;E&FL,%TR:EE.ON

TOLERANCES CHK ,} WATERTOWN, MASSACHUSETTS

H 9-30-47

ECHAS R [YT SEQUENTIAL DECODER
mer | Vum[™ gpm 4sesd TWO WAY ENCODER

FINISH MATERIAL

SIZE CODE IDENT

0| 25020 | FO28.03.00

NEXT ASSEMBLY]MODEL
SCALE — | TsHEET) ofF 2

A 4 | 3 2 l 1

Te)
-y,
&
E
o
a
%]
[
=
(Vo)
~
a " | _ ﬁ
o 4
<
S
%
© S D N 5 o
- o}
o o
. g _ =3
; 3. z 4
by ~
<™ O (& WL UL X

= _ o 4 @ | <
VIIIIlIIIIlIIIIIIllll

1

REVISIONS

sym] zone |

DESCRIPTION

[oate | approveD

Ve
S

- —
|
I
I

Sy

FROM MEMORY

A
79

£ 3

|
- -
L

Y

¥

—_ -
SN7402

SN7472

o

TO MEMORY

r—— g

C

%

[

-
i/
1
|

0

I.

\——v—j

Z

'FOLDOUT FRAME 2

_]_I_l_J z pered IOEN TR NO. I PART NO. NOMENCLATURE OR DESCRIPTION Ig ['LZM
PARTS LIST
KEY: ¢.VENDOR ITEM-
- LT GODEX GomFaRATION
TOLERANCES CHK ’ WATERTOWN, MASSACHUSETTS
ANGLES = SURFACES H& 4-3087
DECIMALS APPD T CaBema 4-30787 SEQUENTIAL DECODER
2 PLACE *
cpes | Vuss[™ ppn aamy TWO WAY ENCODER
FINISH MATERIAL .
SIZE | CODE IDENT
o | Semp | FO28.03.00
NEXT ASSEMBLY IWDEL T T
SCALE — SHEET 2 OF 2
A 4 I 3 2 I 1

g

18

20

22
‘ForpouT FRAME | /

P2s

25 24

o _ 12) A) _ <

3 2 1

REVISIONS

SYM] ZONE | DESCRIPTION | Date [APPROVED

'POLDOUT FRAME

> | CODE PART OR =]
_L__L_I_{ & enr IDENTIRYING, NO. I PART NO. | NOMENCLATURE OR DESCRIPTION Ig l o,
PARTS LIST
KEY: *-VENDOR ITEM-
APPLICABLE DOCUMENTS UNLESS OTHERWISE SPECIFIED DR DATE CODEX CORPORATION
DIMENSIONS ARE IN INCHES AW. KELLAWAY 4-728-¢] | 525 ARSENAL STREET
TOLERANCES CHK & WATERTOWN, MASSACHUSETTS
Va #-3067

ANGLES = SURFACES

ok J P Qs w3ed SEQUENTIAL DECODER

3 PLACE %

weies |0 gty 4-3047 PARITY GENERATOR

FINISH . MATERIAL

SIZE CODE IDENT

0| 25420 | FO28-4.00

NEXT ASSEMBLY MODEL
scale NONE [SHEET | oF |

I 3 2 l 1

FORWARD
1%
FORWARD
DECISION
1 25 + 24 [23|22 | 21 |20 | I9 I8 |7 16 15 14 13 12 Hl 10
A B 4 0 3 F G H ! J K L M N 0 P
O
TABLE ~*
b-De] o] @ O O O o
N M L K J | H
ADDED ADDED ADDED ADDED ADDED ETC
TATgLE 124 122 120 Iig Ie
| PULSE | PULSE | PULSE | PULSE f PULSE
BACK BACK BACK BACK BACK
FORWARD
DECISION
NOW NOW NOW NOW ETC
HOLDS HOLDS HOLDS HOLDS
P P P P
25 26 27 28
WITHOUT WITHOUT WITHOUT WITHOUT FORWARD

'FOLDOUT FRAME -/

#/

2

| 1

REVISIONS

sym] zone |

DESCRIPTION | oate approvED

f——— T0 MEMORY

HZ

'WOLDOUT TRAME = &

|>
w
x

DE PART OR
L IDENTIFYING NO. I PARYT NO.

NOMENCLATURE OR DESCRIPTION l g J'LZM
z 3

PARTS LIST

KEY: *.-VENDOR ITEM-

APPLICABLE DOCUMENTS

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES

AW ELAWAY ST |

CODEX CORPORATION
222 ARSENAL STREET
WATERTOWN, MASSACHUSETTS

TOLERANCES CHK
ANGLES + SURFACES
APPD
DECIMALS CQB epwa— $-1-¢9
2 PLACE £ \/ wero [aprp
3 PLACE & INCHES
FINISH MATERIAL

NEXT ASSEMBLY [MODEL

SEQUENTIAL DECODER
FORWARD PARITY ACCUMULATOR

SIZE CODE IDENT

D! 25420 FO28-5.00

scale NONE | [SHEET | oF |

[1

n
w
FORWARD] >
FORWARD
DECISION
25 + - 24 23| 22 2l 20 IS |18 |7 |6 15 14 13 |2 {1
A 8 C D E F G H | J K L M N 0
TO TABLE <ft—
I>s
)
RO +
WILL ADDED
O) apo N 14
HoLos I2s HOLDS | puLSE
Foa R 25 BACK
INFULL NEXT_ | witHouT
TO TABLE I25
| P25
]
@‘— + + + <_é5.- + + + -
WOULD
oump LA woulp LAB AA Y X w v
I5 SUBTRACT
{6 PULSES I24
B LATER I5 PULSES
LATER
<: FORWARD
1
A
PATAATTT TRAVE - /

1

REVISIONS

sym] zone |

DESCRIPTION [DATE [APPROVED

10] 8 7 S 5 q 3 2 }
P Q R s T u v W X Y z g
-
ETC WOULD WOULD wouro LR Jwouro L@ wie LP WILL
SUBTRACT ~ SUBTRACT SUBTRACT SUBTRACT SUBTRACT SUBTRACT
Iio 1g Ig I4 I I
7 PULSES 6 PULSES 5 PULSES 4 PULSES 3 PULSES 2 PULSES
LATER LATER LATER LATER LATER LATER

———— TO MEMORY

#2

FOLDOUL Tiink =&

Z SonE. G PART NO. NOMENCLATURE OR DESCRIPTION Jg 'Lf;‘
PARTS LIST
KEY. *VENDOR ITEM-
APPLICABLE DOCUMENTS UNLESS OTHERWISE SPECIFIED | DR DATE
DIMENSIONS ARE IN INCHES AW, KELLAWAY 5 2-67 COZD2E2XAR%E)£|:2TRRAEIITON
TOLERANCES CHK WATERTOWN, MASSACHUSETTS
ANGLES = SURFACES
DECIMALS AP0 O30 $-376) SEQUENTIAL DECODER
2 PLACE £ \/ MICRO | AaPPD
3 PLACE = INCHES FORWARD PARITY DIVESTITURE
FINISH MATERIAL
SIZE | CODE (DENT
D | 25420 FO28-6.00
NEXT ASSEMBLY | MODEL
, scale NONE | TSHEET | oF |

| 1

8 [7 6 5 |
41'
|
a
|
1
() 25 |24 |23 |22 21 |20 |19 |18 |17 |16 |15
A C) E F G H | J K L MJ
TO TABLE -
126
T0 TABLE ()
P26
)
[-oa(+ —.d)—. + "q
O] WILL | N | WILL | M Lt K J | H F
REMOVE ~§ REMOVE
HOLDS I25 Hops I24 HOLDS
10105 2 pulses P2z 3PULSES P28
26 "L ATER WITH- LATER WiTH-
FULL out ouTt BACKWARD
137 128,127 :
o]] d -
RE-ADDED | ac |READDED| ag AA v
I2s Io4
16 PULSES 15 PULSES
BACK BACK
TYPICAL STAGE
BACKWARD E
Fo(Qy+Qv)+Ba(Sz+S2) —
l—’ R
CLOCK
Fornour FRAME <
8 l 7 6 5

v 4 [3 | 2 1
‘ REVISIONS
’ sym| zone | DESCRIPTION] oate | approveD
|
|
?
i
! BACKWARD
I
I
14 3 | 12 M 10 9 8 7 6 5 4 3 2 | |——— FROM MEMORY
N 0 P Q R S T U v W X Y b4 g
|
|
|
" = WILL DUMP I
16 PULSES LATER
E D C B WILL A
REMOVE
Ip
15 PULSES
:’\> LATER
|
: o
RE ADDED RE ADDED RE ADDED WILL
X W v U T s o R i Q s Pl Mtiop T
3 PULSES 2 PULSES ON e
BACK BACK LAST HoLps PULSE
PULSE p2s
WITHOUT 1 EOLDUUJ. Lo n=2
:\J> __J___l_l:l & | cooe e ART OR | PART NO. I NOMENCLATURE OR DESCRIPTION | g I'LZM
: PARTS LIST

KEY: *-VENDOR ITEM-

APPLICABLE DOCUMENTS

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN INCHES

AW KELLAWAY 57T

CODEX CORPORATION

222 ARSENAL STREET

TOLERANCES CHK WATERTOWN, MASSACHUSETTS
G| 7 [0sec wval SEQUENTIAL DECODER
e ;A::C'i: INCHES BACKWARD PARITY COMPUTATION
SIZE CODE IDENT
0| 240 | FO28-7.00
NEXT ASSEMBLY !MODEL o NORE] e
A 4 | 3 2 | 1

‘D ul sl ED
oo | oo oo |k

25 | o || oB

A9

Mi4 |AI4 Al3

-

—
-

]

193 MS }J
h:D
ALD

'_l:l} TISN7482 TISN7482 TISN7482

FOLDOUT FRAME. [

1

—

REVISIONS

sym] zone |

DESCRIPTION

| oate | approveD

CLOCK

|

P

L T O

D

Me

Ml

=
s

A2 Al

TISN7482

TISN7482

W, W

W,

TISN7482

W | BACKWARD

FOLDOUT FRAuE -3

_J_l__l__igj

CODE
IDENT

PART OR
IDENTIFYING NO.

PART NO.

NOMENCLATURE OR DESCRIPTION

NOTE

|

ITEM
NO.

PARTS LIST

KEY: *.VENDOR ITEM-

APPLICABLE DOCUMENTS

UNLESS OTHERWISE SPECIFIED

DIMENSIONS

ARE IN INCHES

PR AW, KELLAWAY 42707

TOLERANCES

ANGLES =
DECIMALS
2 PLACE =
3 PLACE &

SURFACES

\/MICRO
INCHES

CODEX CORPORATION
222 ARSENAL STREET
WATERTOWN, MASSACHUSETTS

M RPB 43047

APPD QQBamty H-3e-67

APPD MB 0 ’30“7

ADDER

FINISH

NEXT ASSEMBLY MODEL

MATERIAL

SEQUENTIAL DECODER

SIZE CODE [DENT

D | 25420

FO28-08.00

scalte NONE] [sHEET |

OF

| 1

U (=T — : ; g |
1! $ 3 % e
|

E T i aaa

o .1_ | w | 2

_) H WENEIE] _) _ 1T B 1 DB IRV _.m

j Iy | _ N __
gl g%
i fesa'alaslaalal||[|[acaeaasaaifearaataaae OO0

b1t

ﬁﬂ
FOLDOUT FRAME -/

L
P
FORWARD >—~

ADD A >—

BACKWARD

D
Cc
>
B
—_
A

4

|

2

1

1l

Ll

$
T

‘

él

e - - d

1

W _ _

-~

W

(7]

Ys

EAAAS |

arEarE:

e

A4

1%
L =
1

“

s

‘&

oz
~
?

Iz
©

W2

3
T

E4l

jal

hoten
j%@?—
:ﬁ;}—'
eaTan
hfaten
heuian

2

‘FOLDOUZ TRt - L

, :——J— —ﬂl % 15830 , o] Dm:zéinons S —
[| *
._]' 2 | % L D:f_—J ",
s
‘ |
=pR %
} 15833
L
! S
L~ | ;

—‘L——L——-I'—-I g | e L IDENTIEVING. NO. I PART NO. NOMENCLATURE OR DESCRIPTION lg ['L’g‘
PARTS LIST
}:):f KEY: *VENDOR ITEM.
-
J A
JL[/ APPLICABLE DOCUMENTS gmg:gng:EARRVEISIi SI:E:?‘:EF;ED DR S'TRUE 4(2:3-‘.’ CozozszAR%?NRATC;BRAEI!rON
j) TOLERANCES CHK m 4'304’ WATERTOWN, MASSACHUSETTS
1 ANGLES = SURFACES
] DECIMALS APFD Qafara, 4-30°87 SEQUENTIAL DECODER
L] 2 PLACE £
’ H — s puct o Vs [BB ¢3047 METRIC TABLE
FINISH MATERIAL
E]) SIZE | CODE IDENT
— D | 25420 FO28.09.00
! NEXT ASSEMBLY | MODEL
= SCALE — | TsHEET T oF |

N

| 3

B 1

"POLDOUT FRAME ~/

BFO

o M=M+A

] #]
DETERMINE
PARITY FOR
H=0 |
|
M=M+Mo— A
M+M, =0 M=M+M - & j
SHIFT
ENCODER L M=M-M, M=M-Mg
N =N-|
M-M+tM =0 M:=M-Mg+M-O

2

1

SHIFT
ENCODER
RIGHT
N=N-1

\

|

2

REVISIONS
sYm| zone | DESCRIPTION | oate | apprOVED
FOLDOUT FRAME -2
_‘J;I__I Bl 5 e MO [PART NO. I NOMENCLATURE OR DESCRIPTION l§ l';f;‘
PARTS LIST

KEY: ¢-VENDOR ITEM-

APPLICABLE DOCUMENTS

UNLESS OTHERWISE SPECIFIED

DIMENSIONS

ARE IN INCHES

" AW, KELLAWAY 436-6]

TOLERANCES

ANGLES =
DECIMALS
2 PLACE =
3 PLACE =

SURFACES

\/ MICRO
INCHES

CHK W@ 4-3,‘7

CODEX CORPORATION
222 ARSENAL STREET
WATERTOWN, MASSACHUSETTS

APPD (BBasuer %-30-4]

APPD Mﬁ 4’30.(7

FINISH

NEXT ASSEMBLY I MODEL

MATERIAL

SEQUENTIAL DECODER

ALGORITHM

SIZE

D

CODE I0ENT

25420

FO28 -

10.00

scaLE NONE. |

| SHEET |

OF }

1

START N\
CHANNEL
AN

™~

N
//éTART
PROCE

'FOLDOUT FRAME =/

REVISIONS
z sym| zone] DESCRIPTION | oate | ApPrOVED
o AN
s
\ \ FAST
SS
§OR \\\ PROCESSOR ACCE
\ \ \
, \
\ \\
o
'"POLDOUT FRAME -2
__J_J_L__I 5 SO0E DEN TR MO PART NO. NOMENCLATURE OR DESCRIPTION | 5] ':3‘
PARTS LIST

KEY: *-VENDOR ITEM-

UNLESS OTHERWISE SPECIFIED DR
DIMENSIONS ARE IN INCHES

APPLICABLE DOCUMENTS DATE
S,TRUE 4-29-67

CODEX CORPORATION
222 ARSENAL STREET

TOLERANCES CHK WATERTOWN, MASSACHUSETTS
jss | S e GiEee 7o | SEQUENTIAL DECODER
s | V[HARE ¢ TORTOISE
FINISH MATERIAL R E L AT |O N
SIZE | CODE IDENT
o | 204z | FO28-11.00
NEXT ASSEMBLY IMODEL | EGEEG

A 4 | 3 2

[1

P

6
N7

|
/
<—mmp
—
+

DN -1 DN DN +

FATDOUT FRAME -/

e _ o * o

<

2

1

Ry |

A

REVISIONS

sym| 2one |

DESCRIPTION

| pate | approven

'FOLDOUT FRAME -2

NEXT ASSEMBLY l MODEL

_]___l.__[__(& [SonE l DM R NO. T PART NO. NOMENCLATURE OR DESCRIPTION E 'LE;"
PARTS LIST
KEY: = VENDOR ITEM-
APPLICABLE DOCUMENTS UNLESS OTHERWIE PECFED |oR s TRUE 4[)-A2‘I;E_6‘7 CO?ZEZXAR(;(E)STQEQ&EON
TOLERANCES CHK WATERTOWN, MASSACHUSETTS
ANGLES = SURFACES
DECIMALS APFD QLe LByt S-1~ 09 SEQUENTIAL DECOD ER
: e - /s, [0 FAS T- ACCESS
P WATERIAL MODIFICATION

SIZE CODE IDENT

0| 2420 | FO28-12.00

SCALE —— -] [SHEET) oF)

4 I

! 1

‘FOLDOUT FRAME -/

OUTPUT

i

N\ IP///

2

1

REVISIONS

sym] zone |

DESCRIPTION

| pate | approveD

FOLDOUT FRAME « 2

>
"
x

£ PART OR l
J IDENTIFYING NO. PART NO.

w1 ITEM
NOMENCLATURE OR DESCRIPTION 5
z

PARTS LIST

KEY: *-VENDOR ITEM-

APPLICABLE DOCUMENTS UNLESS OTHERWISE SPECIFIED DR DATE CODEX CORPORATION
DIMENSIONS ARE IN INCHES S, TRUE 4-29 €7
TOLERANCES CHK - WATEzreszocvRNs,EuﬁgsiTcRHEuEsTsTTs
s WS 9560, s | SEQUENTIAL DECODER
: e N MEMORY AS A 2-PORT
FINISH MATERIAL Rl N G
SIZE | CODE IDENT
‘ NEXT ASSEMBLY IMODEL SCALE — | [sHEET | OF |
A 4 l 3

| 1

#/

| I

133

(= -

ODD PARITY
|
|
|

T o
0

o > &

-0

13

1§ P

NORMAL I ¢ P
REVERSED

I

TO H TABLE FEED

0,

x¥2oox
WOOCM o
gV HOZANG
RAHCPVWAHC

e 3

INITIATE ACCESS
(CLEAR TO NORMAL)

"POLDOUT FRAME -/

<<

I

P 87 NSEC FROM I

p 87 NSEC FROM REVERSAL CLOCK

REVISIONS
SYM| ZONE | DESCRIPTION | oate [aproven
vV X N ;
|
|
B;D’l—
{1 |
—|
- v
=1 |
T
1 1
=D D
=h=
L d
— l
Bﬁ)'— |
-
]
] S‘ 1 |
=Dau b il
D
] I
] : E
— _
FOLDOUT FRAME - 2.
_[__l_l_| z Cope. IDENPTAI?JIN%R NO. I PART NO. NOMENCLATURE OR DESCRIPTION | g I"T«E)"
PARTS LIST

KEY: *.VENDOR ITEM-

CODEX

222 ARSENAL STREET
WATERTOWN, MASSACHUSETTS

CORPORATION

NEXT ASSEMBLY MODEL

APPLICABLE DOCUMENTS UNLESS OTHERWISE SPECIFIED | bR DATE

DIMENSIONS ARE IN INCHES S.TRUE 5-i-¢7
TOLERANCES CHK

ANGLES = SURFACES

DECIMALS APPD (8B, §-1-69

2 PLACE = \/ I T

3 PLACE & INCHES

FINISH MATERIAL

SEQUENTIAL DECODER

PARITY

GATING .

SIZE

D

CODE IDENT

25420

FO28 -14.00

SCALE —— |

[SHEET | oF

|

1

